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Abstract—Desalination, when combined with energy-efficient
operations and clean energy, has significant potential to address
water security, resilience, and costs. Energy demands of desali-
nation must be met, yet current inefficiencies increase costs, and
the use of non-renewable sources exacerbates climate change.
This research seeks to fill these gaps by advancing integrated
water-energy system decarbonization, using data from multiple
U.S. desalination plants while defining optimization functions
and constraints to reduce energy costs and carbon emissions. A
framework is designed for the optimal sizing of grid-connected
hybrid renewable energy and storage systems using Artificial
Intelligence algorithms to utilize at least 50% renewables.

Index Terms—energy optimization, multi-source data-driven
modeling, desalination, hybrid renewable energy systems, renew-
able energy sources, artificial intelligence, water-energy nexus

I. INTRODUCTION AND RELATED RESEARCH

Water scarcity and carbon emissions are critical issues
globally that require integrated and proactive responses to
droughts, flooding, already limited freshwater resources and
as part of future cost-effective and sustainable infrastructure
development [1]. Today’s decisions regarding the management
of water and energy are linked inextricably. A large amount
of energy is required to collect, treat, and supply water,
which means that thoughtful water management strategies can
result in a significant reduction in energy use and greenhouse
gas emissions. In response to an escalating global freshwater
scarcity crisis, alternative resources such as salt-water desali-
nation are being explored. Reverse Osmosis has proven to be
the most effective desalination process, but its costs (especially
from energy) still need to be reduced further to make it
economically viable. Specific Energy Consumption (SEC -
measured in kWh/m3) for seawater desalination has reduced
from 8 kWh/m3 in the 1970s to 2.5-3.0 kWh/m3 approaching
the thermodynamic limit of 0.76 kWh/m3 for seawater reverse
osmosis [2] (though still higher than surface water treatment
plant energy use of approximately 0.50 kWh/m3). This reduc-
tion in energy consumption is attributable to high-efficiency
pressure pumps, improvement in reverse osmosis membrane
structure, and use of energy recovery devices. In order to
reduce the levelized cost of water and energy usage, strategies
are emerging including for water reuse, optimization of water
demand, energy efficiency, and leveraging renewable energy
(RE), whose cost and availability make it a more compelling
and sustainable option than fossil energy. For example, large

seawater reverse osmosis (SWRO) desalination plants in Israel,
such as Sorek (165 MGD) and Ashkelon (87 MGD) have been
able to achieve a levelized cost of water of less than $0.6/m3
due to a combination of high-pressure pumps, energy recovery
devices, efficient membrane design, and significant water
reuse procedures [3]. Decarbonization of water desalination
will require a diversified approach, incorporating multiple RE
sources, such as photovoltaic (PV), concentrated solar power
(CSP), wind, geothermal, hydro, storage options (battery and
hydrogen), along with traditional energy sources, such as
natural gas.

In reverse osmosis, water molecules are forced through a
semipermeable membrane from a higher salt concentration to
a lower salt concentration under the application of hydraulic
pressure. Currently, seawater (TDS ≥ 30,000 mg/L) and
brackish water (TDS of 1,000-10,000 mg/L) reverse osmosis
are energy-intensive processes primarily dependent on non-
renewable fossil fuels, contributing to carbon emissions of
1.6-6.9x generated by treated groundwater [4]. To alleviate
both the environmental and economic implications of this
dependency, the integration of increasingly cost-effective RE
sources into desalination systems has emerged as a promising
solution. Despite the evident potential of such renewable
energy-powered desalination, it only represents a marginal 1%
of the global capacity [5]. However, RE is getting recognition;
built in 2018, Al Khafji SWRO plant (16 MGD) in Saudi
Arabia is the world’s first large-scale grid-connected PV solar-
powered seawater desalination plant that is considered a zero
emissions plant, producing excess energy during the day and
drawing less energy at night [6].

In tandem with the push towards RE sources, the rise
of Artificial Intelligence (AI) brings substantial potential for
optimizing water demand and RE consumption. AI’s ability
to forecast RE production based on meteorological data,
as well as to optimize the operation of complex energy
systems and dynamically produce treated water, makes it a
potent tool in modern energy-water management. AI can parse
through extensive data, identify patterns and make predictions
with unrivaled speed and accuracy. Specifically, advancements
in Machine Learning (ML) and Deep Learning (DL) show
promise in enhancing the efficiency and performance of re-
newable energy systems within water desalination plants. The
self-learning capabilities of these techniques enable them to



adapt to changing conditions and make real-time adjustments,
thereby improving system reliability and efficiency.

To better understand the practicality of these innovative
approaches, various studies have explored the integration of
RE sources and AI into desalination. For instance, Carta,
Cabrera et al. used an off-grid energy system to power a
seawater reverse osmosis plant, thereby addressing the optimal
economic sizing of off-grid SWRO plants [7]. This approach
demonstrates the potential of off-grid energy sources for water
desalination, informing this research.

Building on this, Maisanam, Sharma et al. utilized a Hybrid
Optimization Model for Electric Renewable (HOMER)-based
techno-economic assessment to design an optimal solar PV-
battery-based system for a remote water supply station [8].
This study highlighted the significant reduction in CO2 emis-
sions achievable with RE systems and the importance of site-
specific assessments in system optimization. Following this,
Rahimi, Shirvani et al. addressed the intermittency challenges
associated with solar energy by integrating energy recovery
devices and energy storage systems, offering a method to
optimize energy consumption in desalination [9].

This energy optimization was further explored by Ro-
driguez, Fontan et al., who demonstrated the potential of
machine learning to predict solar energy generation and im-
prove utilization in desalination systems [10]. Their study laid
the groundwork for Abdelshafy, Jurasz et al. to develop a
hybrid RE system, powered by photovoltaic modules and wind
turbines, to power a reverse osmosis desalination plant using
Particle Swarm Optimization-Grey Wolf Optimizer (PSO-
GWO) hybrid model [11]. Through this, they demonstrated
the potential of AI for optimizing RE use.

In the study by Lai, Pai et al., various machine learning
models such as Artificial Neural Network (ANN), Genetic
Algorithms (GA), Support Vector Regression (SVR), Long
short-term memory (LSTM), etc. were explored for their
effectiveness in RE prediction [12]. This research served to
underscore the value of AI in RE applications. This research
utilized regression models and general algorithms to select sys-
tem configurations that optimized cost, freshwater production,
and energy resource exploitation.

The existing literature lacks a comprehensive approach to
optimizing the diversity of grid-connected renewable energy
sources across different regions using real-life RO desalination
plants to minimize the energy cost and carbon footprint of
water production. This study aims to bridge this gap by opti-
mizing a variety of RE systems and storage for desalination
in various regions, using the potential of AI algorithms. The
study has the framework to achieve decarbonization on a large
scale by proposing the use of at least 50% on-site RE for mid-
to-large desalination plants in the U.S.

II. REAL-WORLD DATA TO SIMULATE POWER
PRODUCTION AND CONSUMPTION

This research is grounded in real-world data, which provides
a robust foundation for analysis and modeling efforts. This
data, collected from multiple sources, offers a high-level view

of the operations of several water treatment facilities in the
U.S., as well as the environmental conditions that influence
the potential for renewable energy generation at these sites.

A. Water Treatment Facilities Data

Operational data from 4 geographically diverse seawater and
brackish water desalination facilities in the U.S. was collected
via online sources and from plant operators. With approxi-
mately 28 million gallons of actual water production per day:
the Tampa Bay Desalination Plant, San Antonio Water System,
Alameda County Water District, and Kay Bailey Hutchison
(see Table I) are facilities that offer a broad representation
of the different environmental and operational conditions that
can influence the feasibility and efficiency of RE systems for
water treatment.

TABLE I: Overview of Data from 4 Seawater/Brackish Water
Desalination Plants: Tampa Bay Desalination (TBD), San An-
tonio Water Services (SAWS), Alameda County Water (ACW),
and Kay Bailey Hutchison (KBH). Tampa Bay desalinates
seawater and the others desalinate brackish water.

TDS Water Production Energy Usage SEC

ppm MGD m3 / year kWh / year kWh / m3

TBD, FL 35000 8.2 11,288,134 43,023,680 3.81
SAWS, TX 1325 3.9 5,349,394 5,019,000 0.94
ACW, CA 1111 6.7 9,198,486 4,205,916 0.46
KBH, TX 2500 9.0 12,433,762 22,380,772 1.8
Total - 27.7 38,269,777 74,629,368 1.95

The commonalities in data collected from these facilities
include daily or monthly energy use, energy costs, water flows,
and water quality from 2017 to 2022. This information is
crucial for understanding baseline energy demands of these
facilities and potential cost savings achieved through the adop-
tion of RE systems. Additionally, the water quality data can
provide insights into the energy intensity of the desalination
process, which can vary depending on the salinity and other
characteristics of the source water.

Each facility also provided additional data unique to their
operations, further enriching this dataset. For instance, some
facilities provided data on their existing RE studies, water
quality, or water/energy storage, which can serve as a bench-
mark for future optimization efforts.

B. Weather Data

Extensive weather data for all study locations was collected,
cleaned and processed to understand differences, anomalies,
and ensure consistency. The National Solar Radiation Database
(NSRDB), created by the National Renewable Energy Labora-
tory (NREL) was the primary database used, providing hourly
weather data from 2010 to 2021.

The NSRDB contains many valuable variables for under-
standing renewable energy potential, including solar irradi-
ance, wind speed, temperature, humidity, and cloud cover.
These comprehensive climate variables give critical insights
into solar and wind resource availability and variability at each



specific site. For example, the solar irradiance data (direct,
diffuse, and global horizontal irradiance) enables analysis of
solar patterns to estimate photovoltaic energy production and
inform solar panel selection and placement. Temperature data
also impacts solar panel efficiency, as higher temperatures
reduce performance, but this effect can be mitigated by select-
ing panels with a low temperature coefficient. Similarly, wind
speed data helps optimize wind turbine siting and design for
maximum energy capture.

In summary, the extensive site-specific weather data from
NSRDB allows for tailoring and optimizing RE systems at
each location to leverage environmental conditions and max-
imize efficiency and reliability. The data provides the initial
foundations to analyze renewable potential and make informed
technology choices for these desalination facilities.

C. Data Analysis and Significance

After obtaining and cleaning the data, analysis aimed to
uncover patterns, trends, and correlations was conducted to
inform optimization of RE systems for water desalination
plants.

One of the key observations from the data was that some
plants had periods in the year when they were not operational,
demonstrated by the dips in treated water output as shown in
the SAWS data in Fig. 2. These operational breaks were due
to maintenance, upgrades, or seasonal fluctuations in water
demand. These periods of inactivity can impact the energy
demand of the plant and, consequently, the sizing of the
RE systems. At the same time, an opportunity for flexible
operation exists for all plants to reduce energy system sizing
and costs via energy efficiency strategies.

The complementary relation of solar and wind energy is
evident from Fig. 1, where the Global Horizontal Irradiance
peaks in May, while wind speed is at its lowest. This suggests
the potential for a balanced energy supply using both sources.

Temperature trends, also depicted in Fig. 1, highlight po-
tential increased energy demands during summer months, are
crucial for appropriately sizing of RE systems.

Fig. 1: Average Monthly Weather Data. The bar graph repre-
sents the average monthly Global Horizontal Irradiance (GHI)
over an 11-year period. The line graphs represent the average
monthly temperature and wind speed over the same period.

The relationship between energy usage (measured in kWh)
and the volume of treated water is a fundamental aspect

of water treatment processes. The energy-intensive nature
of these processes means that a larger volume of treated
water directly corresponds to increased energy consumption.
Conversely, when the volume of treated water decreases,
energy usage decreases as well. This strong correlation is
clearly demonstrated in Fig. 2, which shows trends of energy
use per treated water volume for the San Antonio Water
System. The graph provide valuable insights into operations
of a desalination facility, highlighting efficiency opportunities.

Fig. 2: Energy Usage vs. Treated Water Output Flows. This
figure illustrates the relationship between energy usage (in
kWh) and treated water output (in Million Gallons per Day).

Our analysis of desalination processes reveals significant
correlations between operational parameters. Energy use and
energy costs show a strong positive correlation (Pearson cor-
relation coefficient) of 0.93, indicating a direct relationship
between energy use and operational expenses. Similarly, the
treated water flows and energy use have a positive correlation
(0.77), highlighting the energy-intensive nature of water distri-
bution. Evidently, the treated water flows and the input water
quality measured by turbidity show a negative correlation (-
0.30), suggesting that the lower quality of water, the more time
needed to treat, thus a lower output rate. These correlations
underscore the need to further explore energy optimization and
process performance in desalination.

Based on actual empirical data, this analysis aims to offer
a significant benefit compared to pilot plants and hypothetical
scenarios, which often oversimplify the problem by making
broad assumptions. These oversimplifications may not capture
the challenging dynamics of actual desalination plant oper-
ations. This research paper employs a method that accounts
for these variables, allowing for more accurate and reliable
results. For example, in a study by Abdelshafy et al. [11],
the researchers assumed a solar panel with a 1 kW power
rating in a proposed RO plant, while solar panel data shows
the average is less than half of that power output [13]. In
addition to providing a framework for decarbonization on
a large, commercial scale, this study generates a dataset
across multiple facilities, allowing for a comparative focus and
understanding across multiple types of renewable energy and
desalination systems.



Fig. 3: Correlation Matrices for San Antonio Water System.
This heatmap shows the correlation between the plant opera-
tion variables given by this desalination plant.

III. OPTIMIZATION PROBLEM AND CONSTRAINTS

To obtain the optimal system component sizing, we for-
malize the optimization expressions, decision variables, and
constraints for the multi-task problem of minimizing energy
costs and carbon footprint while meeting the power require-
ments of desalination demand to the extent possible by a given
array of energy sources. Currently none of the plants have
on-site RE generation, though the utilities have a portion of
RE generation, which is expected to increase. This study can
be used to model and compare the following grid-connected
scenarios: (i) 100% renewable energy including storage, (ii)
minimum 75% / 50% / 25% RE with the balance being sourced
from the grid, and (iii) 100% grid-sourced energy.

When configuring the hybrid renewable energy system, we
aim to incorporate state-of-the-art PV panels, wind turbines,
and other advanced technologies that can significantly enhance
energy generation, thereby expediting the decarbonization pro-
cess. Additionally, we foresee improvement in power capacity
and efficiency; and a decline in the costs of diverse renewable
energy systems in the coming years.

A. Objective Function and Decision Variables

The objective is to minimize the total annualized cost and
CO2 emissions of the hybrid renewable desalination system.
The decision variables are:

• Number of PV arrays (Npv)
• Number of wind turbines (Nw)
• Number of concentrated solar panels (Ncsp)
• Number of geothermal units (Ng)
• Number of hydro turbines (Nh)
• Number of battery storage units (Nbatt)
• Number of hydrogen storage units (Nh2)
• Number of inverters (Ninv)
• Number of fuel cells (Nfc)
• Number of buses (Nbus)
• Number of electrolyzers (Nelec)

The Levelized Cost of Energy (LCOE) of each RE system
is given by:

LCOE =
CRF × CAPEX + FOM

CF
+ V OM (1)

where CRF is the capital recovery factor, CAPEX is the capital
expenditures, FOM is the fixed operations and maintenance
costs, CF is the capacity factor, and VOM is variable opera-
tions and maintenance costs.

The total carbon emissions (Etotal) from each RE source
and the utility are also calculated. This is achieved by multi-
plying the power production of each source by its respective
Life Cycle Emissions (LCE) constant:

Etotal =
∑

i∈{pv,wind,csp,geo,hydro,utility}

Pi × Ci (2)

where Pi is the power production and Ci is the LCE constant for each source.
In these formulas, P represents the power production of each

source, and C represents the LCE constant for each source. The
specific LCE constants are: Cpv = 43, Cwind = 13, Ccsp =
28, Cgeo = 37, Chydro = 21, and Cutility varies by location
(average of 422.5).

B. Utility Functions of Decision Variables

We compute the energy output to meet power supply
constraints and to reduce energy costs using the utility func-
tions described below, which depend on weather and design
parameters.

a) Wind Turbine Power: The power output of a wind
turbine, Pwind (W), is given by:

Pwind =
ρAv3Cp

2
(3)

where:
• ρ = Air density ( kg

m3 )
• A = Rotor swept area (m2)
• v = Wind speed (m

s
)

• Cp = Power coefficient

b) Photovoltaic (Solar) Power: The power output of a
photovoltaic (PV) panel, Ppv (W), is given by:

Ppv = ηinv · ηB · ηr · Tc ·
APV

module
· I (4)

where:
• ηinv = Inverter efficiency
• ηB = Battery efficiency
• ηr = Rated solar cell efficiency
• Tc = Temperature correction factor
• APV = Area of each module (m2)
• I = Average daily insolation

c) Concentrated Solar Power: The power output PCSP of
Concentrated Solar Power (CSP) systems is given by:

PCSP = AGηCF (5)
where:

• A = Area of the solar collector
• G = Solar radiation incident on the collector (solar irradiance)
• η = Efficiency of the solar collector
• CF = Capacity factor (considers system’s operational hours and down-

time)



d) Geothermal Power: The power output of a geothermal
power plant PGT is given by:

PGT = ηmc∆T (6)

where:
• η = Geothermal system efficiency
• m = Mass flow rate of the geothermal fluid
• c = Specific heat capacity of the fluid
• ∆T = Change in temperature of the fluid

e) Hydro Power: The power output of a hydroelectric
power plant PH is given by:

PH = ηρghQ (7)

where:
• η = Efficiency of the turbine and generator
• ρ = Density of water (approx. 1000 kg

m3 )
• g = Acceleration due to gravity (approx. 9.81 m

s2
)

• h = Height of the water column (hydraulic head)
• Q = Flow rate of the water

C. Constraints

The optimization is subject to the following constraints1:
1) All decision variables must be greater than or equal to

zero:

Npv, Nw, Ncsp, Ng, Nh, Nbatt, Nh2, Ninv,

Nfc, Nbus, Nelec ≥ 0 (8)

2) Renewable fraction (RF) must be greater than a mini-
mum percentage (50%):

RF =
Ppv + Pw + Pcsp + Pgeo + Phyd

Ptotal
≥ 0.5 (9)

3) Maximum discharge depth for battery storage (e.g.
80%):

DOD ≤ 0.8 (10)

4) RO plant capacity limits:

PFCmin
≤ PFC ≤ PFCmax

(11)

IV. DISCUSSION AND CONCLUDING REMARKS

This comprehensive study on four U.S. desalination plants
reveals substantial potential for implementing hybrid renew-
able energy systems. By utilizing renewable energy sources,
the current annual output of 32 billion grams of CO2 can
be reduced by 50%, equivalent to 16 billion gallons or
16,000 metric tons of CO2 reduced annual emissions, akin
to the impact of planting 600,000 trees [14]. This optimized
framework offers a viable solution applicable to other water
treatment and desalination facilities, promoting eco-friendly
practices and sustainable water production.

AI models like Multi-Objective Particle Swarm Optimiza-
tion (MOPSO), Multi-Objective Genetic Algorithm (MOGA),

1Additional constraints may be added for individual sites and energy types
reflecting the total space available and operational simplicity to implement
renewable energy systems. For example, the Tampa Bay facility was built in
2007 after Tampa Bay Water was required to reduce the use of groundwater
dramatically. The plant has since had occasional shutdowns due to issues with
membrane maintenance and cost, but continues to run on a consistent basis
and support the town with clean water production.

and Deep Reinforcement Learning (DRL) can enhance the
efficiency of hybrid RE systems, optimizing component sizing,
and reducing energy costs and CO2 emissions.

Implementing AI models in real-world desalination plants
can reduce carbon footprint and boost operational efficiency.
Further research should focus on context-specific AI optimiza-
tion and advanced models for integrating multiple renewable
energy sources and energy storage management.

In conclusion, this study demonstrates the feasibility and
benefits of adopting hybrid RE systems in functioning de-
salination plants, providing a roadmap for other facilities. AI
optimization ensures dynamic system adjustments based on
environmental changes, contributing to a greener future. This
research catalyzes the move from fossil fuels to renewable en-
ergy in water desalination, offering a scalable and sustainable
solution to address global water production needs.
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