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Abstract—The increasing intensity and frequency of water
scarcity, carbon emissions, and climate risks pose critical chal-
lenges necessitating increased uptake of and a paradigm shift
to energy- and climate-smart water desalination processes. This
study employs metrics and a decision framework to enable
and accelerate the energy efficiency, decarbonization, and cost-
effectiveness of water desalination processes. As an essential step,
we analyze various Renewable Energy (RE) sources, such as
photovoltaic, wind, concentrated solar power, geothermal, and
hydro energy; in addition, we examine battery storage systems
to address the intermittency challenges associated with solar and
wind energy. The feasibility of these diverse RE systems was
assessed at four (4) mid-to-large scale U.S. desalination plants
using operating plant and weather/environmental data, establish-
ing optimization functions and constraints. In this research, to
facilitate a comprehensive Energy Management System (EMS),
we align RE generation with the anticipated energy demand of
the plants. Machine Learning (ML) models, including SARIMA,
Random Forest, XGBoost, and Gradient Boosting, are employed
for forecasting water production, energy consumption, and long-
term weather. The results show that Artificial Intelligence (AI)
models, notably Gradient Boosting and an innovative XGBoost
average method, demonstrated high accuracy in forecasting
critical variables for RE systems in water desalination, with a
normalized Root Mean Square Error of less than 10% for key
metrics. This study can serve as a basis to optimize the mix of
hybrid RE systems to minimize cost and carbon emissions.

Index Terms—water, desalination, reverse osmosis, time series
forecasting, renewable energy, optimization, energy management,
decarbonization, weather forecasting, artificial intelligence.

I. INTRODUCTION

The water-energy nexus represents a critical intersection in
our sustainable future, highlighting the intricate link between
water and energy efficiency, where each resource’s manage-
ment directly influences the availability and sustainability of
the other [1]. In the face of a mounting global water crisis
exacerbated by population growth, climate change, and unsus-
tainable water management practices, water desalination has
emerged as a critical technology to meet the escalating demand
for freshwater resources [2]. Reverse Osmosis (RO) has been
the most effective desalination process with an approximate
65% market share [3], but its costs (especially energy costs)
need to reduce further to make it commercially viable and

environmentally sustainable. RO’s Levelized Cost of Water
(LCOW) and Specific Energy Consumption (SEC) have been
declining due to engineering innovation, high-efficiency pres-
sure pumps, improvement in RO membrane structure and use
of energy recovery devices [4], [5]. As an example, the SEC
has reduced from 8 kWh/m3 in the 1970s to 2.5-3.0 kWh/m3

approaching the thermodynamic limit of approximately 1
kWh/m3 [2]. Renewable energy offers the potential to further
lower the costs of water desalination, and substantially reduce
emissions. Even though the International Renewable Energy
Agency (IRENA) claims that RE could power almost all the
world’s energy needs by 2050, highlighting the vast potential
of these sources for sustaining water desalination processes,
today less than 1% of the water desalination plants’ energy
need globally is met by RE [6]. Recently there has been
significant interest (and studies) in implementing RE systems
to power RO desalination; however, these systems have gener-
ally been small/pilot-scale. There are a few notable exceptions
that prove that with the right regulations and structure, 100%
RE transition can be achieved. For example, the Al Khafji
Seawater Reverse Osmosis (SWRO) plant in Saudi Arabia,
operational in 2018, produces 16 MGD water and is the first-
ever large-scale desalination plant connected to a grid-tied
polycrystalline silicon PV-RO system that is 100% powered
by RE [7]. Its solar PV arrays have an output of 20 MW, are
located 1 km away from the SWRO plant and cover an area
of 900,000m2. Similarly, the Perth SWRO plant in Australia
with a capacity of 36 MGD sources electricity from 48 wind
turbines at Emu Downs Wind Farm (electricity is first sold to
the utility) with 83 MW of capacity and located 260 km north
of the city [5] validating that land considerations for onsite
RE plants can be overcome.

We present a novel solution for decarbonizing water desali-
nation by optimizing RE systems using AI by analyzing real-
world data from four U.S. water desalination plants at Tampa
Bay in Florida, San Antonio in Texas, Alameda County in
California, and Kay-Bailey Hutchison in Texas. Our research
employs metrics and a decision framework to decarbonize
desalination process by 50%, 75% and 100% over time by
using a mix of renewable energy sources such as Photovoltaic



Fig. 1: Energy Management System



Energy (PV), Wind Energy (WE), Concentrated Solar Power
(CSP), Geothermal Energy (GE) and Hydro Power (HP).
While RE will play an integral part in the decarbonization of
the desalination and the electric grid, no single RE source can
service the entire need as the RE power source is intermittent
[8]. A combination of hybrid RE will be required to maintain
reliability at the utility level, including baseload (minimum
power load requirement) with geothermal, hydro, biomass,
nuclear), intermediate load (CSP with storage, hydro), and
peak load (PV, wind, CSP without storage) [9].

Our proposed EMS framework shown in Fig. 1 can be
used to generate optimal sizing of each RE system to satisfy
the desalination plants’ energy demand. The EMS first learns
by assessing 5 years of historical daily/hourly operational
data from the desalination plant including water production,
energy consumption, water quality and 10-year historical
hourly weather data to establish optimization functions and
constraints. Various ML models, including Seasonal Autore-
gressive Integrated Moving Average (SARIMA) [10], Random
Forest, XGBoost, and Gradient Boosting, are employed for
weather and energy load forecasting. We then estimate the
energy production potential of each RE source, factoring in
surplus or deficiency management through battery storage and
utility grid interconnection.

Decarbonization of water desalination will require a diver-
sified approach, incorporating water reuse/recycle, water and
electricity demand reduction, varying mix of renewables, over-
sized RE capacities to overcome high cost of long-duration
storage, energy efficiency measures using digital technologies,
and demand side management.

II. RELATED RESEARCH

The existing literature lacks a comprehensive approach to
optimizing the diversity of grid-connected RE sources across
different regions using real-life RO desalination plants to
minimize the energy cost and carbon footprint.

Several studies have been conducted to forecast water
production, energy demand of desalination, and weather using
ML models. However, most of these focus on short-term
forecasting. [3] designed a hybrid RE system coupled with
RO desalination using solar and wind energy, battery back-up
and multi-criteria AI optimization models. [11] used an off-
grid power system to power a SWRO pilot plant addressing
optimal sizing of off-grid SWRO plants. [12] demonstrated
the potential of ML to forecast solar energy generation and
improve utilization in desalination systems. [13] conducted
a survey for use of ML models for applications in weather
and climate forecasting to bridge the gap between short-
term and long-term weather forecasting. [14] discussed the
development and application of ARIMA model for weather
forecasting, specifically focusing on visibility forecasting. [15]
presented a Vector Autoregression (VAR) weather model to
forecast key weather variables (temperature, solar radiation,
and wind speed) for electricity supply and demand in 61 U.S.
cities. These studies are a subset of our scope to decarbonize

desalination. Additionally, most data used in these studies was
either simulated or on a small scale.

III. ANALYSIS OF RENEWABLE ENERGY SOURCES

Decarbonizing water desalination necessitates examining
the feasibility, efficiency, and integration potential of different
RE sources, including photovoltaic panels, wind turbines, con-
centrated solar power, geothermal units, and hydro turbines.
Through predictive analytics and data-driven insights, we aim
to craft a nuanced understanding of how each energy source
can be harnessed effectively, considering the environmental
conditions and technological capabilities at our disposal. Our
focus extends beyond mere adoption of RE sources; it en-
compasses a thorough evaluation of factors that influence the
efficiency, deployment, and performance of these systems.

A. Power Estimation Formulas and Assumptions

In order to find an optimal combination of RE sources for
each site, we must first outline all the factors that play a role
in this in order to analyze the effectiveness of each RE source
individually. More specifically, we have outlined a framework
consisting of a set of formulas, variables, and constraints.

The energy generation formulas for each RE source depend
on weather/environmental factors, including temperature (for
PV and CSP), solar irradiance (for PV and CSP), wind speed
(for wind), streamflow (aka discharge) and gage height (for
hydro) as shown in Table I [4], [16]. We have used state-of-
the-art technologies for RE systems currently available (and
expect further ongoing improvements), which will enhance
energy generation, and lower the Levelized Cost of Energy
(LCOE). Table II shows the assumptions underlying the energy
estimation and battery storage formulas. In our analysis, we
used Huasun Solar - Himalaya G12 Series HJT PV solar
module; GE 2.5XL wind turbine with a 2,500 kW rated
capacity; power tower with 10-hour storage for CSP; run-
of-river hydro (1 - 10 MW) and mini hydro (100 kW-1
MW) power plant without storage; Next Frontier Enhanced
Geothermal Service (EGS) using Binary cycle technology with
1.5 km well; and 600 kW power rated battery storage with 8-
hour discharge time.

We examine battery storage to address intermittency chal-
lenges associated with RE systems: 8-hour battery storage
units are used for system sizing, with excess RE production
(once fully charged) sold to the utility. The battery discharges
if the energy consumption is greater than RE generation.
Scenarios both with and without battery storage are evaluated
to assess the cost.

B. Levelized Cost of Energy and Carbon Emissions

The LCOE, which is the per-unit cost of generating elec-
tricity over the entire life cycle, for each RE source was
obtained from the National Renewable Energy Laboratory
(NREL) Annual Technology Baseline (ATB) workbook [17].
Table III shows the LCOE and carbon emissions for each of
the four desalination plants reviewed. The LCOE of RE has
reduced significantly over the last decade – per IRENA from



2010 to 2022, the global LCOE of PV has reduced by 89% to
$0.049/kWh, onshore wind by 69% to $0.033/kWh, and CSP
by 69% to $0.118/kWh [18] – and in many cases lower than
the cost from the grid.

TABLE I: Power Estimation Formulas

Formula/Assumption Description
Ppv = ηinv · ηB · ηr · Tc ·APV · I Photovoltaic Power Calculation
Tc = (1− β · (Tcell − 25)) Temperature Correction Factor
Tcell = Ta + I · (NOCT−20)

800
Photovoltaic Cell Temperature Cal-
culation

Pw =
0.5·ρ·A·v3·Cp

1000
Wind Power Calculation

Pcs = A · I · ηsc · CF Concentrated Solar Power Calcula-
tion

Ph = ηh · ρ · g · h ·Q/1000 Hydro Power Calculation
PGT = ηmc∆T Geothermal Power Calculation
Eb(t) = Eb(t − 1) + (Ppv(t) +

Pw(t)+Pcs(t)+Ph(t)− PF (t)
ηinv

) ·
ηbch

Battery Charging State (excess en-
ergy sold to the utility)

Eb(t) = Eb(t − 1) − (Ppv(t) +

Pw(t)+Pcs(t)+Ph(t)− PF (t)
ηinv

) ·
ηbdch

Battery Discharging State (demand
> power generation)

Ebmax = Nbatt · Ebsc Maximum Battery Energy Capacity
Ebmin = (1− DOD) · Ebmax Minimum Battery Energy Capacity
Ebmin ≤ Eb(t) ≤ Ebmax Battery Energy Capacity Constraint
LCOE =
(CRF∗CAPEX+FOM)∗1000

(CF∗8760)+V OM

Levelized Cost of Energy (LCOE)

TABLE II: Renewable Energy and Battery Storage Modeling
Assumptions. Constants are in blue, variables are in black.

Parameter Unit/Value Parameter Unit/Value
PV Panel Power Rating 700 W Hydro Power Rating Varies kW
ηinv (Inverter
Efficiency)

95% ηh (Efficiency of Hydro
Turbine)

85%

ηB (Battery
Efficiency)

100% ρ (Water Density) 1,000
kg/m3

ηr (Rated Solar Cell Effi-
ciency)

22.50% g (Acceleration
Due to Gravity)

9.81 m/s2

β (Temp. Coefficient of
Efficiency)

-0.37% h (Gage Height) Varies m

Apv (Area of Each PV
Module)

3.1 m2 Q (Streamflow or Dis-
charge of Water)

Varies
m3/s

I (Average Daily Solar Ir-
radiance)

Varies
kWh/m2/day

CF (Capacity Factor Hy-
dro)

62%

Ta (Ambient Temperature) Varies °C
NOCT (Nominal Operat-
ing Cell Temp)

44 °C Geothermal Power
Rating

Varies kW

m (Mass Flow Rate of
Geothermal Fluid)—

40 kg/s

Wind Turbine Power
Rating

2,500 kW c (Specific Heat Capacity
of Fluid / Water)

4.186
kJ/(kg°C)

ρ(Air Density) 1.225
kg/m3

∆T = Tgr− Ta (Reser-
voir less Ambient Temp.)

Varies °C

A (Rotor
Swept Area)

11,310 m2 ηgt (Efficiency of
Geothermal System)

90%

v (Wind Speed) Varies m/s
Cp (Power
Coefficient)

35% Battery Storage

Battery Power
Capacity (BPC)

600 kW

CSP Power
Output Capacity

200 kW Discharge Time 8 hours

A (Area of Solar Collec-
tor)

4,047 m2 Battery Storage
Capacity (BSC)

4800 kWh

I (Average Daily Solar Ir-
radiance)

Varies
kWh/m2/day

Depth of Discharge
(DOD)

80%

ηsc (Efficiency of Solar
Collector)

30.00% ηinv (Inverter
Efficiency)

95%

CF (Capacity
Factor CSP)

45% ηbch (Battery
Charge Efficiency)

80%

ηbcch (Battery Discharge
Efficiency)

100%

TABLE III: LCOE and CO2 Emissions

LCOE
($/kWh) Utility PV Wind CSP Hydro Battery

Grid CO2
Emissions
(g/kWh)

Tampa $0.0730 $0.070 $0.038 $0.098 $0.080 $0.044 430
SAWS $0.1010 $0.070 $0.054 $0.098 $0.080 $0.044 450

Alameda $0.2120 $0.068 $0.054 $0.087 $0.080 $0.044 450
KBH $0.0820 $0.068 $0.054 $0.077 $0.080 $0.044 330

Lifetime CO2
Emissions (g/kWh) 43 13 28 21 33

IV. FORECASTING WATER PRODUCTION, ENERGY
CONSUMPTION, AND LONG-TERM WEATHER

A. Forecasting Objective

This paper delves into a detailed analysis of the energy
requirements of water desalination processes and the potential
of various RE sources to meet these needs efficiently and
sustainably. To properly model the RE energy generation for
the future, we forecast the environmental conditions using AI
modeling. Additionally, to determine the amount of RE system
units needed to meet the energy demand for each plant, we
used desalination plant energy consumption data.

B. Input Data and Output Quantities

As part of this study, we obtained operational data from
4 geographically diverse seawater and brackish water desali-
nation facilities in the U.S. as shown in Table IV. With
approximately 28 million gallons of actual water production
per day (MGD), these plants offered a broad representation
of the different environmental and operational conditions that
could influence the feasibility and efficiency of RE systems
for water treatment. The hourly/daily/monthly 5-year data
from the facilities included water flows, hours in operation,
energy use data, backwash water use, peak demand and
quality metrics such as total dissolved solids (TDS), turbidity,
temperature and pH. Fig. 2 shows the correlation between
historical energy usage and treated water flow at San Antonio
Water desalination plant. The plant data was pre-processed to
account for variables like weather changes, plant shutdowns,
and maintenance using statistical and AI tools, which formed
the core of the approach. In addition, missing values and
outliers were checked for and removed, other than the hydro
data forecast (where was forward and backward filled).

TABLE IV: Summary Data from 4 Desalination Plants: Tampa
Bay Desalination (TBD), San Antonio Water System (SAWS),
Alameda County Water (ACW), and Kay Bailey Hutchison
(KBH). Tampa Bay desalinates seawater and the others de-
salinate brackish water.

TDS Water Production Energy Usage SEC (avg.)

ppm MGD m3 / year kWh / year kWh / m3

TBD, FL 35,000 8.2 11,288,134 43,023,680 3.81
SAWS, TX 1,325 3.9 5,349,394 5,019,000 0.94
ACW, CA 1,111 6.7 9,198,486 4,205,916 0.46
KBH, TX 2,500 9.0 12,433,762 22,380,772 1.8

Total - 27.7 38,269,777 74,629,368 1.95



Fig. 2: SAWS - Historical Energy Usage vs. Treated Water

In addition, extensive weather data (irradiance, wind speed,
temperature) as shown in Fig. 3 and environmental data
(streamflow rate and gage height) for all study locations was
collected, cleaned and processed to understand differences,
anomalies, and ensure consistency. The The National Solar
Radiation Database (NSRDB), created by NREL, was the pri-
mary database used, providing 10+ years hourly weather data
from 2010 to 2021 [19]. Next, to evaluate run-of-river or mini
hydro potential, we obtained streamflow and gage height data
for a 4-year period (2018-2021) at 15-minute interval from
USGS WaterWatch. The streams closest to the desalination
plants were identified through the National Hydropower Asset
Assessment Project (NHAAP) Public Portal [20].

Fig. 3: Tampa Bay - Historical Monthly Weather

C. Methods

In this research, to obtain optimal sizing of each RE
system to satisfy the desalination plants’ energy demand,
methods including predictive modeling for water production,
energy consumption, and long-term weather/environmental
forecasting have been used. The forecast modeling is split
into two main areas. We first forecast the plant conditions,
where we model each plant’s treated water flows (Fig. 4) and
energy consumption (Fig. 5) (historical data sourced from the
respective water desalination plants), to use as constraints for
RE generation potential on a given day. Second, we forecast
environmental variables, which are further split into two
sub-parts, due to the nature of the data obtained and the RE
sources that were relevant. In the first sub-part, we forecast
weather, specifically temperature (Fig. 6), DNI and wind

speed (Fig. 7) (historical data sourced from NSRDB), which
all serve as independent variables in the energy generation
formulas of PV, CSP, and WE. Various ML models, including
SARIMA, Random Forest, XGBoost, and Gradient Boosting,
are employed for forecasting. In the second sub-part, the
variables for hydro power generation, namely streamflow
(the volume of water that pass through a hydroelectric power
plant per unit time) and gage height (the height of water in a
stream above a reference point) are forecasted. Fig. 8 shows
streamflow (historical data sourced from USGS WaterWatch).
These are also forecast using XGBoost.

1) Forecast of Energy Consumption and Water Flows: We
employed a 60:20:20% train-test-validation dataset to ensure
a robust evaluation of our model’s performance. This split
allowed us to have a sufficient number of samples for training,
testing and validation while maintaining a balance between
the different sets. Various models were then trained, including
SARIMA, Random Forest, and Gradient Boosting Regressors.
These models were chosen for their robustness in handling
time series data and their ability to capture complex patterns
in both water flow and energy consumption. An in-depth
description of each model is provided.

Fig. 4: Tampa Bay - Historical vs. Forecast Water Flow (MGD)

Fig. 5: Tampa Bay - Historical vs. Forecast Energy Consump-
tion (kWh)

a) SARIMA: SARIMA is a time series forecasting model
that accounts for seasonality in data [10]. SARIMA combines
autoregressive (AR) and moving average (MA) components
with differencing operations to make the time series stationary.
The model introduces additional parameters to capture sea-
sonal variations, including seasonal autoregressive (SAR) and



Fig. 6: Tampa Bay - Temperature (ºC) Train & Test Validation

Fig. 7: Tampa Bay - Wind Speed (m/s) Train & Test Validation

seasonal moving average (SMA) terms. However, SARIMA
assumes that the seasonality in the data follows a regular
pattern with a constant length, which may not match the
variably seasonal behavior of weather patterns.

Fig. 8: Bullfrog Creek Tampa - Streamflow (m3/s) Train &
Test Validation

b) Random Forest: Random Forest operates by con-
structing a multitude of decision trees during training and
provides forecasts based on the average of the individual trees.
What sets Random Forest apart is its incorporation of both
bagging, a technique to reduce overfitting by training each tree
on a random subset of the data, and random feature selection,
enhancing model robustness and generalization. This ensemble
approach allows Random Forest to excel in capturing complex
relationships within data and handling high-dimensional fea-
ture spaces.

c) Gradient Boosting: Gradient Boosting is an ensemble
learning technique that builds a strong predictive model by
combining the forecasts of multiple weak models, typically
decision trees. The core idea behind Gradient Boosting is to
iteratively train new models to correct the errors made by the

existing ensemble.

The training process involved fine-tuning the models
with hyper-parameter optimization, using Grid Search
Cross-Validation. This step was critical to identify the most
effective parameters for each model for optimal performance.
Parameters like Number of Estimators, Learning Rate, Max
Depth, Min Samples Split, and Min Samples Leaf were
adjusted to minimize validation error and enhance accuracy.
Post-training, the models were evaluated using metrics such
as RMSE (Root Mean Square Error), MAE (Mean Absolute
Error), and Error Rate. The error rate function calculates
the proportion of predictions that deviate from their actual
values by more than a specified threshold. It is a measure
of the frequency of significant errors in predictions, with
a higher value indicating less accurate predictions. The
best-performing models were then selected for each site and
metric—Random Forest for all three metrics at Alameda,
Gradient Boosting for Kay Bailey and San Antonio, and a
combination of both for Tampa. The final stage involved
making forecasts for the next 3 years, showcasing the models’
capability to forecast trends and assist in strategic planning
and decision-making.

2) Weather/Environmental Forecasting: The script created
for this forecasting process is designed to interface with
Streamlit, a popular framework for creating interactive web
applications, primarily used here to fetch weather data from
the NSRDB API and forecast future temperature, Direct Nor-
mal Irradiance (DNI), and wind speed locally. Since the wind
speed obtained from NSRDB was recorded at a height of 2m,
and our chosen wind turbines have a 139m hub height, we
used the wind power law formula of [21] to recalibrate wind
speed. The Streamlit interface allows users to input specific
parameters like year and geographical coordinates, making the
data fetching process interactive and user-friendly. The script
then retrieves relevant weather data from the NSRDB API.

For forecasting, the script employs three different methods:
XGBoost, Prophet, and a unique XGBoost average variant, as
described below. The XGBoost model was initialized with an
Autoregressive Forecaster from the skforecast library to easily
facilitate time series forecasting.

a) XGBoost: XGBoost sequentially builds a multitude of
weak learners, typically decision trees, with each subsequent
tree aiming to correct the errors of its predecessors. It intro-
duces an innovative approach by incorporating regularization
terms in the objective function, which helps to prevent over-
fitting and enhances model generalization.

b) Prophet: Prophet is a decomposable time series fore-
casting model that is robust to missing data and shifts in trends
[22]. It uses an additive approach that considers underlying
components such as trends, seasonality, and holidays. The
model adapts to the data’s characteristics through a piecewise
linear or logistic growth curve for trend forecasting, coupled
with Fourier series for seasonal patterns, allowing flexibility
in capturing seasonality changes over time. Prophet applies a



Bayesian framework to estimate uncertainties in the forecast,
providing both point estimates and confidence intervals. This
makes Prophet particularly suited for business forecasts with
strong seasonal patterns and multiple seasonal cycles.

c) XGBoost Average Variant: The XGBoost average
variant is a novel approach where the model first forecasts
the differences between actual and average values of the
parameters (temperature, DNI, wind speed) and then combines
these forecasts with historical average data to make final
forecasts. This method leverages the strengths of XGBoost in
handling non-linear relationships and temporal dependencies,
while also incorporating the historical average as a baseline,
which often enhances the model’s accuracy and robustness,
especially in scenarios with cyclical or seasonal patterns.

The forecasting process starts with validating the models
using a portion of the data to gauge their performance and
accuracy. This structured approach ensures that the models are
reliable and their forecasts are grounded in actual data trends.
Additionally, the script includes hyper-parameter tuning, us-
ing the Random Search Forecaster from skforecast. Unlike
grid search, which exhaustively searches through all possible
combinations, Random Search randomly selects combinations,
providing a more efficient way to find good hyperparameter
values, especially when the hyperparameter space is large.

For the hydro forecast, we use 15-minute-spaced data span-
ning over 4 years. Our feature engineering process is tailored
to capture the essential components of time series data: trend,
seasonality, and cyclicality. Moving averages with a window
of 35,040 (equivalent to a year’s data points) are calculated
to approximate the general trend. A time step feature was
used to assign a unique number to each data point from 1
to 97,507. It serves as an independent variable within a linear
regression framework, facilitating the estimation of 1st, 2nd,
and 3rd order polynomial trends. Fourier series analysis, with a
focus on identifying appropriate periodicity (initially identified
as 10 but later optimized to 5 based on model performance), is
employed to model seasonality more accurately. Additionally,
auto-correlation analysis suggests using 8 lags as features.
These incorporate data from the previous 8 time periods into
the analysis to leverage the identified auto-correlation, where
past values significantly influence future values in the time
series. In this hybrid model, linear regression is specifically
employed to capture seasonality patterns by using day-of-the-
week and Fourier series components, while XGBoost regres-
sion handles the remaining features, leveraging its capability
to model complex, non-linear relationships and interactions in
the data. This approach is validated with metrics like MSE,
RMSE, MAE, and R2, showing satisfactory performance on
both the train and test sets.

D. Results

Table VI shows hourly summary 3-year forecast for DNI,
wind speed and temperature for the four desalination plants
used in this study. Table VII calculates the annualized 3-
year average energy generation (per unit) from PV, wind and

CSP using the hourly forecast weather data and RE system
assumptions, which shows that energy generation from PV
and CSP is highest in KBH and Alameda, and for wind is
highest in Tampa and SAWS. The preliminary assessment of
run-of-river or mini hydro shows sparse potential in Tampa
and Alameda and mini hydro potential (100 kW-1 MW) in
KBH and SAWS, due to low discharge and gage height. Future
work could make a more sophisticated and optimized hydro
resource characterization.

The results show that among the tested AI models, Gradient
Boosting and an innovative average method of XGBoost
have the best accuracy. Table V shows that the RMSE
for weather forecast varied across different variables and
locations. On average, the normalized RMSE (defined as

RMSE
Range of Observed Values×100 ) of the XGBoost average model for
Temperature, Wind Speed, Treated Water Flow and En-
ergy Consumption was less than 10%, and for DNI ap-
proached 20% in certain cases. The code for our models
used in this study can be accessed at https://github.com/anti-
integral/Decarbonization-Study.

V. CONCLUSION

On-site RE generation allows energy independence and
security and can protect against wide swings in energy prices
and any potential supply disruption, thereby contributing to the
overall resilience of water supply infrastructure. Specifically,
a 50% RE mix could lead to a halving of the annual CO2

output, equivalent to 16 billion gallons or 16,000 metric tons
of CO2 reduced annual emissions, akin to the benefit derived
from planting 600,000 trees [23]. Our long-term energy con-
sumption, water flow, and weather forecasting models are able
to capture the trend of the input data despite its volatile trends,
producing results with less than 10% normalized RMSE (up to
20% for DNI). This is a reasonable outcome while taking into
consideration that these models are predicting years into the
future and yet able to show patterns similar to the input data.
The only areas where they don’t perform are outliers, which
are obviously hard to predict due to their random nature in a
long forecast process.

These forecasting methods also have other practical appli-
cations, including helping researchers use these AI models
to forecast climate for other projects, identify trends in how
weather could change over time, and provide a framework to
improve long-term weather modeling.

A. Future Research

1) Improving Weather Forecasting Models: Enhancing
weather forecasting models could lead to more accurate fore-
casting, critical for optimal RE utilization. Future studies can
focus on integrating more sophisticated ML algorithms, like
deep neural networks or ensemble methods, which could offer
better accuracy and reliability. Additionally, incorporating real-
time data feeds and expanding the dataset to include more
diverse weather scenarios could improve model robustness.



TABLE V: XGBoost Average Model Results
Forecast Quantity Range Alameda RMSE SAWS RMSE Tampa Bay RMSE Kay Bailey RMSE
Temperature (◦C) -10.0 to 46.1 3.37 4.67 3.47 3.62
Hourly DNI ( W

m2 ) 0 to 1,049 189 234 199 204
Wind Speed (m

s
) 0 to 35.2 1.72 2.48 2.79 2.97

Discharge (m3/s) RMSE/Range 2.2 (0 to 180) 4.0 (1 to 382) 1.4 (1 to 54) 4.5 (0.3 to 132)
Gage Height (m) 0 to 13 0.2 0.1 0.1 0.1

Treated Water Flow (MGD) 0 to 30 1.49 0.86 1.17 0.39
Energy Consumption (kWh) RMSE/Range 59,000 (0 to 1,000,000) 711 (0 to 300,000) 6,751 (0 to 300,000) 10,185 (0 to 83,333)

TABLE VI: Average Weather Values, 3-Year Forecast

Site
DNI

(kWh/m2/day)
Wind Speed

(m/s)
Temperature

(°C)
Discharge

(m3/s)
Gage Height

(m)

Tampa 5.52 5.91 23.26 0.6 5.8
SAWS 5.58 4.60 21.38 12.1 3.5
KBH 7.82 4.82 18.72 16.1 2.2

Alameda 6.77 3.88 16.11 0.6 1.7

TABLE VII: Energy Generation, 3-Year Annualized Forecast

Site PV Wind CSP

Power Capacity of 1 unit (kW) 0.7 2,500 200

Tampa (kWh) 1,437 8,831,674 1,222,751
SAWS (kWh) 1,462 8,326,970 1,113,431
KBH (kWh) 2,056 5,317,925 1,560,330

Alameda (kWh) 1,752 2,129,060 1,350,030

2) Development of Optimization Models for System Sizing:
Future research can develop advanced optimization models
that consider various factors like the cost of installation,
maintenance, the efficiency of energy conversion, and the
compatibility of different RE sources and storage. Techniques
such as linear programming, mixed-integer linear program-
ming, or more advanced, AI-driven optimization methods can
be employed to find the optimal mix and size of RE systems
that balance cost, carbon emissions, efficiency, and reliability.

3) Conducting Sensitivity Analysis: A comprehensive sen-
sitivity analysis (including Monte Carlo simulations) with re-
spect to dependent variables such as weather conditions, water
production rates, and energy demand is crucial. This analysis
would help in understanding how changes in these parameters
impact the performance of the RE systems. This knowledge
is vital for designing systems that are resilient to variations in
environmental conditions and operational demands.
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