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Abstract: The escalating challenges of water scarcity and carbon emissions require a shift towards 
climate-smart water desalination processes to ensure sustainable management of our water resources. 
Desalination has significant potential to address water security, yet energy demand and costs are high. 
This study employs a novel automated Energy Management System (EMS) to accelerate 
desalination’s decarbonization, energy efficiency, and cost-effectiveness using Renewable Energy 
(RE), battery storage, and Artificial Intelligence (AI). Leveraging Machine Learning (ML) models such 
as XGBoost and Gradient Boosting, we forecasted water production, energy consumption, and weather 
based on historical 5-year data from four real life mid-to-large scale U.S. desalination plants. Utilizing 
sophisticated optimization algorithms such as Particle Swarm Optimization (PSO) we aligned RE 
generation with plants’ energy demands. Results show that our customized innovative ML models 
accurately forecasted critical variables, achieving normalized Root Mean Square Error of less than 10% 
for key metrics such as treated water flows, energy demand, temperature, solar irradiance, wind speed, 
etc. Optimization led to RE system configurations that reduce costs and carbon emissions across all 
facilities, underpinning the study’s objective of fortifying water security for a resilient water supply 
infrastructure and ensuring sustainable operation of desalination plants amidst climate change. A RE 
optimization scenario at the Tampa Bay desalination plant, which dynamically selects the optimal RE 
percentage between 50% and 100%, led to 99% RE mix of Photovoltaic Energy, Wind, and Concentrated 
Solar Power (without batteries) resulting in a 98% reduction in CO2 emissions and 1% lower cost 
compared to the utility baseline; whereas a 100% RE optimization scenario (with batteries) led to 40% 
higher cost compared to the utility due to high cost of battery storage (Note: Tampa Bay plant has the 
lowest electricity costs among the desalination plants used in our study). 
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I. INTRODUCTION 

Water and Energy are critical for sustenance of life on Planet Earth; there is an inextricable link 
between water and energy efficiency, where each resource’s stewardship directly influences the 
availability and sustainability of the other [1]. According to UNU-INWEH, 5.6 billion people (~70% of 
the world’s population) live in countries that are considered water insecure as of 2023 (including the 
entire population of Africa); and 2 billion people (~26% of the world’s population) do not have safe 
drinking water, a crisis expected to worsen in the coming decades, especially in urban areas [2]. 
Desalination, especially Reverse Osmosis (RO) has emerged as a viable solution with tested technology 
to harness vast amounts of seawater and brackish water to produce high quality water, with more than 
21,000 operational facilities in 177 countries, increasing at 6.8% annually between 2010 and 2020 [3]. 
However, it faces two problems: (1) desalination is expensive with energy accounting for 25-40% of the 
total cost or over 50% of the operating cost [4], and (2) today more than 99% of world’s water desalination 
plants use energy derived from fossil fuels thereby contributing to carbon emissions and climate change.  
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We present a novel, cost-effective, energy-efficient, and automated Energy Management System 

(EMS) [5] framework for decarbonizing water desalination by: (1) forecasting water production, energy 
consumption and long-term weather using ML models based on 10-year hourly historical weather data and 5-
year hourly/daily historical operations data from four U.S. desalination plants, (2) integrating with an EMS 
that uses RE generation and battery storage to displace fossil energy and aligns RE with the anticipated energy 
demand of these plants, and (3) co-optimizing location-specific RE and battery system sizing and water 
production schedule  to create a resilient water-supply infrastructure capable of navigating sudden changes in 
environmental conditions and operational demands. Our vision is to replace fossil fuels with RE by 
50%-100% for a sustainable future and propose a pathway for energy cost savings.  

 
New water desalination projects in various parts of the world (Spain, Egypt, Saudi Arabia, UAE, Australia 

and Chile) are integrating desalination with RE. RE technologies are becoming more accessible as a result 
of technological innovations in continuously improving efficiency and cost.  In 2023, the Spanish 
government authorized a Euro 600 million investment plan for new desalination plants powered by 
photovoltaic solar [6]. Future desalination plants being considered include power generation from hybrid 
solar PV, wind power plants and floating PV plants. At the same time, Global Levelized Cost of Electricity 
(LCOE) of RE has been  reducing significantly, per International Renewable Energy Agency (IRENA) 
from 2010 to 2022 -- PV reduced by 89% to $0.049/kWh, onshore wind by 69% to $0.033/kWh, and CSP 
by 69% to $0.118/kWh -- in many cases lower than the utility cost [7, 8]. In an effort to diversify its 
economy away from oil dependence, Saudi Arabia is planning on tapping its abundant solar energy to 
provide water and sustainable energy needed by its futuristic Neom city. While RE will play an integral 
part in the decarbonization of water desalination and the electric grid, no single RE source can service the 
entire need as the RE power source is intermittent [9]. Use of hybrid energy systems and co-optimization 
of water and energy demand planning, informed by accurate data on RE distribution of a specific 
geographic location, can lead to substantial cost reductions and enhanced efficiency in resource utilization 
[10]. Co-optimization of water and energy allows for water to be desalinated based on local electricity 
production cost, availability of renewable resources, water storage, and battery storage. The complexity 
of optimal RO-RE design systems, especially coupling hourly electricity operational decisions with long-
term investment decision, will require greater use of AI based optimization methods as they tend to be 
more accurate and provide more efficient solutions [11]. These sophisticated tools offer dynamic 
optimization capabilities, enabling real-time adjustments to desalination operations based on fluctuating 
energy availability and demand. Additional strategies that are considered in the optimization include 
oversizing of RE sources to overcome high battery cost, and varying mix of RE.  

 
II. RELATED RESEARCH 

 

Though several studies have been conducted to optimize the mix of RE and battery storage, existing 
literature lacks a comprehensive approach to optimize diverse grid-connected RE sources across 
different regions using real-life RO desalination plants. Additionally, most data utilized in these studies 
was either simulated or on a small scale.  

 
[12] designed a hybrid RE system coupled with RO desalination using solar and wind energy, battery 

back-up and multi- criteria AI optimization models. Research conducted at ITC Gran Canarias pilot 
scale RO units, Canary Islands, Spain, presented a method for the optimal economic sizing of a medium-
scale modular seawater reverse osmosis (SWRO) plant powered exclusively by off-grid wind energy 
and a water storage reservoir that allows coverage to meet freshwater demand without the use of large 
energy storage devices [13]. [14] incorporated Artificial Neural Networks (ANNs) into the control panel 
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of a wind-powered SWRO plant to investigate whether the ANNs can manage the feed flow and 
operating pressure setpoints based on varying electrical power, feedwater conductivity and temperature. 
[15] demonstrated the potential of ML to forecast solar energy generation and improve utilization in 
desalination systems. [11] developed a hybrid RE system powered by photovoltaic modules and wind 
turbines to power a RO desalination plant using PSO – Grey Wolf Optimizer hybrid model to 
demonstrate the potential of AI for optimizing RE use. [16] explored various ML models including 
ANNs and Genetic Algorithm (GA) for their effectiveness in RE forecasting by selecting system 
configurations that optimize cost, freshwater production and energy resource exploitation. [17] 
conducted a survey for use of ML models for applications in weather and climate forecasting to bridge 
the gap between short-term and long-term weather forecasting. [18] used statistical methods such as 
Auto Regressive Integrated Moving Average (ARIMA) for forecasting weather with minimal error.  

 
III. METHODS 

 

This study employs a comprehensive methodology to optimize the integration of RE sources such as 
Photovoltaic Energy (PV), Wind Power (WT), Concentrated Solar Power (CSP), and Hydro Power (HT) 
along with battery storage into desalination plants. The methodology encompasses two major components: 
forecasting and optimization. The forecasting component involves predicting energy demand and 
environmental conditions that impact RE generation, while the optimization component aims to determine 
the optimal mix and sizing of RE systems to minimize costs and CO2 emissions. By combining advanced 
ML models with robust optimization techniques, this approach ensures an efficient, sustainable and cost-
effective EMS for water desalination plants. Real-world data from four U.S. mid-to-large water 
desalination plants (Table 1) is analyzed to optimize RE systems.  

 
Table 1: Data from 4 U.S. Seawater/Brackish Water Desalination Plants [5], [8] 

 
 

a. Forecasting Water Production, Energy Demand, and Environmental Conditions 
A comprehensive approach was adopted to forecast both energy consumption and water flows, 

crucial factors in the operation of desalination facilities. A 60:20:20% split was utilized for training, 
testing, and validation datasets to ensure robust model evaluation while maintaining sample balance. 
Various models were trained, including SARIMA, Random Forest, and Gradient Boosting Regressors, 
chosen for their adeptness in handling time series data and capturing intricate patterns. SARIMA, 
incorporating autoregressive and moving average components, was utilized to address seasonality in data, 
while Random Forest and Gradient Boosting utilized ensemble techniques to capture complex 
relationships and achieve superior predictive performance. Hyper-parameter optimization through Grid 
Search Cross-Validation fine-tuned the models, optimizing parameters such as Number of Estimators, 
Learning Rate, and Max Depth to minimize error and enhance accuracy. 

 

Seawater/Brackish Water Desalination Plants
TDS Energy Usage SEC

Units: ppm MGD m3 / year kWh / year kWh/m3

Tampa Bay Desalination Plant, FL 1,3 35,000  8.2        11,288,134  43,023,680    3.81
San Antonio (SAWS), TX  1 1,325    3.9        5,349,394    5,019,000      0.94
Alameda County Water District, CA 1 1,111    6.7        9,198,486    4,205,916      0.46
Kay Bailey Hutchison, TX 2 2,500    9.0        12,433,762  22,380,772    1.80
   Total 27.7      38,269,777  74,629,368    1.95
Notes: 1) Actual Data from Facilities;  2) Estimated Data; 3) Tampa is seawater, others are brackish

Water Production
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Furthermore, a sophisticated weather/environmental forecasting system was developed, integrating 
with Streamlit for interactive data retrieval and visualization. Three forecasting methods, XGBoost, 
Prophet, and a novel XGBoost average variant, were employed to predict future temperature, Global 
Horizontal Irradiance (GHI), and wind speed. These models were rigorously validated and optimized, 
ensuring reliability and accuracy in forecasts. Among the AI models tested, Gradient Boosting and an 
innovative average method of XGBoost demonstrate the highest accuracy, with normalized RMSE values 
below 10% for temperature, wind speed, treated water flow, and energy consumption, and approaching 
20% for GHI in certain cases [5]. 

 
b. Calculation of Energy Generation by RE Sources 

The forecasted variables play a crucial role in the optimization process. After forecasting water 
demand, energy consumption and weather inputs, we input the forecasted weather variables in our RE 
generation formulas to forecast hourly energy generation by location for each RE source. PPV, Pcsp, Pw, 
and Phyd represent energy production from PV solar panels, wind turbines, CSP power towers, and hydro 
turbines, respectively. The forecasted energy consumption (PFC) serves as the demand that needs to be 
met by the RE sources and utility power. In the scenario with battery storage, the optimization also 
considers the state of charge of the batteries. The batteries store excess energy generated during periods 
of high RE production and discharge it during periods of low production to meet the demand or provide 
backup power during grid outages, enhancing energy independence and resilience. Electricity can be 
stored when rates are low and used when rates are high. The constraints on the depth of discharge (DOD) 
ensure that the batteries are not overused, maintaining their longevity and efficiency. As of April 2023, 
California eliminated net energy metering, moving towards a net-billing tariff structure, which cut the 
rate paid to customers for exporting their excess solar production to the grid by ~80%, and has increased 
battery + solar installation in the state [19].  

 
c. RE CAPEX, OPEX, and Carbon Emissions 

We obtained the Capital Expenditure (CAPEX), Fixed Overhead (FOH) and Variable Overhead 
(VOH) for each RE system from the National Renewable Energy Laboratory (NREL) Annual Technology 
Baseline (ATB) workbook [20]. We amortized the CAPEX and Fixed Overhead Cost over a 25-year period 
using a financing interest rate of 5.0% to obtain a fixed monthly payment per unit resulting in fixed annual 
payment (CAPEX and fixed operating expenses) of $77, $310,206, $77,174, and $126,294 for PV, wind, 
CSP, and batteries, respectively. High generation production of the RE sources will result in a lower LCOE 
for the RE system. The CO2 emissions for each utility were sourced from public databases and for each 
RE system from NREL [21]. Table 2 summarizes our observations and computations. 

  

Table 2: Total Cost and CO2 Emissions for RE and Battery Systems 

 

   
 

d. Optimization of Renewable Energy Mix 
The optimization process in this study aims to determine the optimal sizing and mix of RE sources 

Per Unit 
Metrics

Unit 
Sizing 
(kW)

CAPEX / 
kWh

CAPEX / 
Unit

Rebate 
%

CAPEX after 
Rebates / 

Unit
FOH / 
Unit

VOH / 
kWh

Interest 
Rate Years

Fixed Monthly Payment 
per Unit (CAPEX + 
FOH) for 25 years

Fixed Annual Payment 
per Unit (CAPEX + 
FOH) for 25 years

PV 0.7 $1,664 $1,165 20.0% $932 $12 $0 5.0% 25 6 77     
Wind 2500 $1,724 $4,309,398 20.0% $3,447,518 $68,420 $0 5.0% 25 25,856 310,266     
CSP 200 $5,835 $1,167,053 20.0% $933,642 $11,678 $3 5.0% 25 6,431 77,174     

Battery 600 $2,212 $1,327,207 0.0% $1,327,207 $33,189 $0 5.0% 25 10,524 126,294

CO2 Emissions Tampa SAWS Alameda KBH PV Wind CSP Battery
g/kWh 430 450 450 330 43 13 28 33
g/unit 30 32,500   5,600     19,800   

Grid Lifetime RE / Battery System
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and battery storage to meet the energy demand of desalination plants while minimizing costs and CO2 
emissions. This section outlines the methodology used to achieve these objectives, covering the decision 
variables, constraints, objective function, and optimization technique. By leveraging the forecasts of 
energy demand and environmental conditions, optimization ensures a sustainable and cost-effective 
energy management system for water desalination plants. The optimization process involves balancing 
the use of PV arrays, wind turbines, CSP units, and hydro turbines, alongside battery storage and utility 
power. We initially evaluate the following scenarios that illustrate different levels of reliance on RE and 
battery storage, offering insights into grid independence, cost, and environmental impacts.  
 

The following three scenarios were considered in the optimization process.  The scenarios assume 
no net metering with the utility grid as we wanted to assess the highest level of energy independence.  
1. 100% RE with Battery Storage (No Utility): This scenario aims to achieve complete grid 

independence by only using RE sources and battery storage. The purpose is to demonstrate the 
feasibility and implications of operating desal plants entirely on RE without relying on the utility grid.  

2. 50-100% constraint of RE-mix with Utility (No Batteries): This scenario represents a hybrid approach 
where a minimum of 50% of the energy demand is met by RE sources, with the remaining demand 
supplemented by utility power. No battery storage is used in this scenario. It illustrates the transition 
phase towards higher RE integration while maintaining grid connectivity for reliability 

3. 0%-30% RE with Utility (No Batteries): This scenario shows a low reliance on RE, with only 0-30% 
of the energy demand met by renewables. The utility grid supplies most of the energy demand. This 
scenario serves as a baseline for comparing the benefits of partial RE adoption. 

 
Defining Decision Variables and Constraints: The decision variables in this optimization 

problem include the number of units for each RE source: photovoltaic arrays (Npv), wind turbines (Nw), 
concentrated solar power units (Ncsp), and battery banks (Nbatt). The optimization process must 
determine the optimal number of each type of unit to minimize the objective function while satisfying all 
constraints. The following constraints for optimization ensure that the optimized solutions are feasible and 
practical, maintaining system reliability and longevity:  
1.  Non-negativity: All decision variables must be non-negative, ensuring a physically meaningful 
solution:   𝑁𝑁𝑝𝑝𝑝𝑝,𝑁𝑁𝑐𝑐𝑐𝑐𝑝𝑝,𝑁𝑁𝑤𝑤,𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔 ,𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑁𝑁𝑖𝑖𝑖𝑖𝑝𝑝,𝑃𝑃𝐹𝐹𝐹𝐹 ≥ 0 
 

2.  Renewable Fraction (RF): The RE fraction must be 100%, at least 50%, or at most 30% of the 
total energy demand in the 3 scenarios: 𝑅𝑅𝑅𝑅 ≥ 1, 0.5, 𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅 ≤ 0.30 
 

3.  Depth of Discharge (DOD) of Battery Storage: The depth of discharge for battery storage should 
not exceed 80% to ensure battery longevity:    𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 0.8 
 

4.  Plant Capacity Limits: The energy produced must be within the capacity limits of the 
desalination plant:  𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑃𝑃𝐹𝐹𝐹𝐹 ≤ 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚  
  

Formulating the Objective Function: The objective function is designed to minimize both the 
cost and the CO2 emissions of the energy system. It is a weighted sum of the total costs and CO2 
emissions, where the weights w1 and w2 reflect the relative importance of these two objectives. We have 
used 50% weightage for each of w1 and w2. The total cost includes CAPEX, FOH and VOH costs for 
each RE source, with CAPEX being financed at 5% interest cost over a 25-year period. CO2 emissions 
are calculated based on the lifetime emissions for each energy source; a cost of $50/ton has been assumed 
for CO2 emissions for Tampa, which represents the federal government Social Cost of Carbon (SCC). 
Additionally, we ran sensitivity analysis at CO2 emissions cost of $15/ton at the low end, which is the 
approximate trading level of the RGGI (Regional Greenhouse Gas Initiative) prices, and of $30/ton, which 
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is the approximate mid-point of the aforementioned levels. The objective function can be expressed as: 
𝐷𝐷𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑤𝑤1 ⋅ (𝑂𝑂𝑜𝑜𝑂𝑂𝑡𝑡𝑡𝑡𝑅𝑅𝑡𝑡_𝑂𝑂𝑜𝑜𝑐𝑐𝑂𝑂 + 𝑢𝑢𝑂𝑂𝑂𝑂𝑡𝑡_𝑂𝑂𝑜𝑜𝑐𝑐𝑂𝑂) + 𝑤𝑤2 ⋅ (𝑂𝑂𝑜𝑜𝑂𝑂𝑡𝑡𝑡𝑡𝑅𝑅𝑡𝑡_𝐶𝐶𝐷𝐷2_𝑂𝑂𝑜𝑜𝑐𝑐𝑂𝑂 + 𝑢𝑢𝑂𝑂𝑂𝑂𝑡𝑡_𝐶𝐶02_𝑂𝑂𝑜𝑜𝑐𝑐𝑂𝑂) 

where:  
• totalRE_cost is the sum of costs for all RE sources and battery storage. 
• util_cost is the cost of any additional energy purchased from the utility grid. 
• totalRE_CO2_cost is the cost associated with the CO2 emissions from all RE sources. 
• util_CO2_cost is the cost associated with CO2 emissions from utility grid. 
 

The total cost and emissions from each RE source and battery storage are calculated using the following 
formulas: 

𝑂𝑂𝑜𝑜𝑂𝑂𝑡𝑡𝑡𝑡𝑅𝑅𝑡𝑡_𝑂𝑂𝑜𝑜𝑐𝑐𝑂𝑂 = �(𝑁𝑁𝑖𝑖 ×  𝑅𝑅𝐴𝐴𝑃𝑃𝐴𝐴𝑖𝑖 + 𝑉𝑉𝐷𝐷𝐻𝐻𝑖𝑖 × 𝑡𝑡𝐸𝐸𝑂𝑂𝑜𝑜𝐸𝐸𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜𝐸𝐸𝑢𝑢𝑂𝑂𝑂𝑂𝐸𝐸𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 

 where, FAPU is the fixed annual payment per unit for each RE and battery system. 

𝑂𝑂𝑜𝑜𝑂𝑂𝑡𝑡𝑡𝑡𝑅𝑅𝑡𝑡_𝐶𝐶𝐷𝐷2_𝑂𝑂𝑜𝑜𝑐𝑐𝑂𝑂 = �(𝐶𝐶𝐷𝐷2𝑡𝑡𝐸𝐸𝑂𝑂𝑐𝑐𝑐𝑐𝑂𝑂𝑜𝑜𝐸𝐸𝐸𝐸𝑂𝑂𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂𝐸𝐸𝑂𝑂/𝑢𝑢𝐸𝐸𝑂𝑂𝑂𝑂𝑖𝑖 × 𝑁𝑁𝑖𝑖 × CO2CostperTon)
𝑁𝑁

𝑖𝑖

 

 

Optimization Technique: Particle Swarm Optimization is used to find the optimal configuration 
of RE units. PSO is a population-based stochastic optimization technique inspired by the social behavior 
of birds flocking or fish schooling. It is effective for solving complex optimization problems with multiple 
variables and constraints. In PSO, each particle represents a potential solution (a specific configuration of 
RE units) and moves through the solution space based on its own experience and the experience of 
neighboring particles. The movement of each particle is influenced by its best-known position and the 
best-known positions of its neighbors, updating its velocity and position iteratively to find the optimal 
solution. 
 

The PSO algorithm can be summarized as follows: 
1. Initialization: Generate an initial population of particles with random positions and velocities. 
2. Evaluation: Evaluate the objective function for each particle. 
3. Update: Update the velocity and position of each particle based on its best-known position and the 

global best position. 
4. Iteration: Repeat the evaluation and update steps until a stopping criterion is met (e.g., a maximum 

number of iterations or a convergence threshold). 
 

The position of each particle xi is updated according to: 
𝑂𝑂𝑖𝑖(𝑂𝑂 + 1) = ω𝑂𝑂𝑖𝑖(𝑂𝑂)+𝑂𝑂1𝑜𝑜1�𝐸𝐸𝑖𝑖 − 𝑥𝑥𝑖𝑖(𝑂𝑂)� + 𝑂𝑂2𝑜𝑜2�𝐸𝐸 − 𝑥𝑥𝑖𝑖(𝑂𝑂)� 

 

𝑥𝑥𝑖𝑖(𝑂𝑂 + 1) = 𝑥𝑥𝑖𝑖(𝑂𝑂) + 𝑂𝑂𝑖𝑖(𝑂𝑂 + 1) 
where: 
• vi is the velocity of particle I; ω is the inertia weight. 
• c1 and c2 are acceleration coefficients; r1 and r2 are random numbers between 0 and 1. 
• pi is the best-known position of particle I; g is the global best position. 
 

IV. RESULTS 

On-site RE generation at the desalination plants is optimized not only for location specific weather, 
RE generation potential, and water demand but also for battery storage and power demand side 
management. Co-optimization of water and energy using advanced and dynamic ML models is imperative 
to exploit operating cost savings and minimize carbon emissions while dynamically adjusting for weather 
changes. It will allow for optimal battery storage and water storage to create a resilient water-supply 
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infrastructure capable of navigating changes in environmental conditions and operational demand. To 
achieve grid independence and energy security while minimizing cost and carbon emissions, our 
optimization model recommends a combination of wind, PV, and battery storage at the Tampa Bay plant 
– the intermittent nature of the RE sources is overcome using a hybrid approach. We assessed hydro 
power in our analysis, including input variable forecasting, but found the energy generation to be 
significantly lower than PV, wind, and CSP, and therefore excluded from our final analysis.  
 

The optimization of Scenarios 1, 2 and 3 results in 100%, 99%, and 30% RE mix, respectively 
based on $50/ton cost of carbon emission  for Tampa desalination plant. As shown in Figure 1: Scenario 
1 optimization results in 15,838 PV Panels, 18 acres of CSP, 2 Wind Turbines, and 12 batteries,  Scenario 
2 optimization results in 15,688 PV Panels, 18 acres of CSP, and 2 Wind turbines, whereas Scenario 3 
results in 4,036 units of PV Panels, 5 acres of CSP, and 1 Wind Turbine. Figure 2 shows that there is 
some wasted energy due to assumption of no net metering: Scenarios 1 and 2 have 11% and 15% wasted 
energy, which results in a higher cost for these scenarios. Figures 3 and 4 show the total cost of all 3 
scenarios and the baseline (current 100% utility sourcing) – Fig. 3 shows annual optimization results and 
Fig. 4 shows optimization results over a 5-year period. Interestingly and coincidently, Scenario 2, 3 and 
Baseline result in approximately the same total cost of $16.9 million over 5 years (average cost of $3.38 
million per year) as the Tampa Bay plant has one of the lowest utility costs in the U.S. at 7.3 cents/kWh, 
whereas Scenario 1 results in a much higher cost of ~$25 million over 5 years ($5.0 million per year), 
primarily due to the use of 12 batteries in Scenario 1 to create 100% energy independence. More 
importantly, Scenarios 1, 2, 3 and Baseline results in CO2 emissions (in grams/kWh) of ~5 million, 1.4 
billion, 62.5 billion, and 90.0 billion, respectively, underscoring the significant savings in CO2 by 
switching to renewables.  A 100% RE mix at Tampa Bay can result in CO2 emissions savings over 5-
years equivalent to planting 4.1 million trees [22].  

 
Hybrid RE systems are crucial to achieving decarbonization. The CSP systems with power towers 

and 10-hour storage generate energy by capturing sunlight during the day, converting it to heat, and 
storing this heat in molten salts. This stored thermal energy can be used to produce electricity at night or 
during cloudy periods.  Hybrid PV-CSP systems combine the immediate electricity generation by PV 
with the dispatchable electricity of CSP, providing complementary and reliable RE solutions that 
maximize efficiency and minimize intermittency. Similarly, solar-wind hybrid energy systems 
complement each other by combining two different weather parameters, especially when it is windy at 
nighttime or when it is cloudy, thereby reducing intermittency and creating a more stable electricity 
supply. The use of batteries in Scenario 1 adds to the LCOE but ensures energy independence and protects 
the desalination plant from wide fluctuation in energy prices. Also, since utility prices tend to increase 
over time, batteries should be economically beneficial over their useful life. With states such as California 
eliminating the net metering program, a 100% migration in electric generation from the utility grid to on-
site RE generation at desalination plants would lead us to our goal of decarbonization.  

 
Post-Optimization Analysis: After obtaining the optimal configuration of RE units, the results 

are analyzed to ensure they meet the energy needs and environmental goals of the desalination plants. The 
total RE production, costs, and CO2 emissions are calculated and compared against the energy demand 
and capacity limits. The results are aggregated over different time periods (yearly, monthly) to provide a 
comprehensive summary of the system’s performance. Detailed plots and summary statistics are generated 
to visualize energy production, demand satisfaction, costs, and emissions. These visualizations and 
statistics help stakeholders understand the performance of the optimized energy system and make 
informed decisions about sustainable water desalination. 
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Tampa Bay Desal Plant - Optimization Results (# of Units, Volume, Total Cost) 
Fig 1: # of Units by RE Source – Scenarios 1-3 Fig 2: 5-Yr. Energy Gen by Source– Scenarios 1-3 

 
 

  
Fig 3: Cost Opt. by Yr.– Scenarios 1-3 & Baseline Fig 4: Cost Opt. 5 Yrs.- Scenarios 1-3 & Baseline 

  
 

V. CONCLUSION AND FUTURE RESEARCH 

By integrating advanced forecasting techniques with a robust optimization framework, this study 
provides a comprehensive approach to designing cost-effective and environmentally sustainable energy 
systems for water desalination plants. The optimization process ensures that the EMS balances economic 
and environmental factors while reliably meeting the energy demands of the desalination plants. This 
holistic approach supports the goal of reducing the carbon footprint of water desalination and promoting 
the use of RE sources. In the 3 scenarios we evaluated, Scenarios 2 and 3 with RE mix of 30% and 99% 
(both without batteries) resulted in total cost equivalent to that of the utility baseline, however Scenario 1 
with RE mix of 100% (with batteries) resulted in 40% higher cost compared to the utility baseline due to 
higher cost of battery storage. This goal of onsite RE generation can be extended to other industries. 

 
Future studies can evaluate incorporating demand side management strategies by considering 

hourly historical and forecasted utility prices, which could mitigate the cost of batteries significantly. 
Additionally, in the optimization scenarios we assumed no net metering to evaluate a higher degree of 
energy independence. However, additional sensitivity analysis including net metering could result in 
further reduction in total cost. Finally, future studies could evaluate the use of geothermal energy and 
hydrogen storage, water reuse, water and electricity demand reduction, energy efficiency measures, and 
demand-side management.   
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