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Abstract. Urban systems are managed using complex textual docu-
mentation that need coding and analysis to set requirements and eval-
uate built environment performance. Yet, qualitative coding and as-
sessment face challenges like resource limitations and bias, accuracy,
and consistency between human evaluators. Errors in coding may
result in omissions or false premises that carry into broader urban
system design. This paper contributes to the study of applying large
language models (LLM) to qualitative coding activities to reduce re-
source requirements while maintaining comparable reliability to hu-
mans. Here we report the application of LLMs to deductively code 10
case documents on the presence of 17 digital twin characteristics for
the management of urban systems. We utilize two prompting meth-
ods to compare the semantic processing of LLMs with human coding
efforts: whole text analysis and text chunk analysis using OpenAI’s
GPT-3.5 and 4 models. We found similar trends of internal variabil-
ity between methods and results indicate that LLMs may perform
on par with human coders when initialized with specific deductive
coding contexts. Text chunking using GPT-4 resulted in similarity
with human coders in terms of percent agreement, recall and accu-
racy. Adding GPT-4 chunked text results as an additional evaluator
showed agreement levels of 89% among all reviewers, in contrast,
analyzing entire texts showed lower agreement at 82%. Analyzing
chunked text with GPT-4 also resulted in a 14% false negative (FN)
rate and 6% false positive (FP) rate, while the same model with full
text produced a 44% FN rate and 2% FP rate. These FP and FN rates
resulted in a recall of 84%, and accuracy of 81% for chunked text
and a lower recall of 49%, and reduced accuracy of 54% for whole
text.

1 Introduction
The management of Urban Systems – the interconnection of built
environment, the natural environment, and society – involves com-
plex textual documentation that requires persistent review to derive
requirements and performance standards. Architects and planners re-
view codes and regulations to ensure construction projects align with
current standards. Water managers review environmental protection
rules and scientific reports to ensure water quality and policymak-
ers review public consultation documents, policy proposals, and re-
search studies to assess urban development projects. Each of these

∗ Corresponding Author. Email: steve.conrad@colostate.edu.

roles necessitates humans to read, digest, and semantically process
hundreds of thousands of words to deduce relationships and pres-
ence of content for a specific theme or premise. Traditional methods
for this qualitative deduction are time consuming, and the knowledge
and control of the process varies by age, experience, and memory of
the human coder [28, 29]. Human coders also present biases, varia-
tions in accuracy and consistency[9]. Missteps in the coding process
could lead to omissions or inaccuracies, potentially skewing urban
system designs and policy implementations. Moreover substantially
large data sets may preclude analysis and remain unexamined [17].

In this paper we explore the application of Large Language Mod-
els (LLMs) to the address the resource and consistency challenges of
humans coding complex scientific documents. We utilize the context
of managing urban systems as a test case. We examine the premise
that LLMs could reduce the burden of coding while maintaining reli-
ability comparable to human coders. Specifically, we investigate the
use of OpenAI’s GPT-3.5 and GPT-4 models to deductively code dig-
ital twin characteristics from literature on urban water systems. We
examine two semantic processing methods: whole text analysis and
chunking and compare the performance to human evaluators.

The contribution of this paper is two fold:
1) We contribute to the ongoing discourse on automating analyti-

cal tasks in urban system management by integrating LLMs into the
deductive coding process of complex textual documentation.

2) We assess and propose a method for prompting LLMs for de-
ductive coding that achieves higher performance and similarity in
outcomes to humans, presenting a viable option for including LLMs
as an additional document evaluator.

2 Background

Pretrained LLMs show potential to automate or augment various Nat-
ural Language Processing workflows, one of the most promising be-
ing text classification and information retrieval from unstructured,
text-based files [4, 22]. Despite their promise, LLMs carry risks as-
sociated with utilization in classification processes as they do not in-
corporate user goals, but rather focus on next-word prediction lead-
ing to propagated biases and incoherent texts [23, 1]. In addition,
LLMs are subject to hallucinations or fabricating information due to
false or inadequate training data and lacking knowledge recall pro-
cesses [14]. To combat this, Ouyang et al. [20] utilized human input



for fine-tuning LLM responses using reward modeling and reinforce-
ment learning to better align LLM objectives with operator goals.
Raczyński et al. [21] addressed issues of natural language model
(NLM) coherence through the application of a transformer to better
increase explainability of the outputs of language models. In addi-
tion, it has been shown that general language models perform sig-
nificantly better at extracting information from text-based data that
off-the-shelf language models when provided prior knowledge en-
hancement or a more technical training set [14, 16]. These studies
indicate the need for adequate prompting before language analysis
tasks.

2.1 Deductive Coding for Textual Data Classification

A frequently used approach for the analysis of multifaceted, qualita-
tive characteristics from unstructured textual data is deductive coding
[13]. Deductive coding begins with a set of pre-defined qualitative
descriptors (e.g. codes based on theoretical foundations, hypothe-
sises or themes) to define a codebook for labeling different datapoints
within a text. Deductive coding is guided through the development of
a list of definitions for each feature to be identified, which is typically
created with the aid of expert knowledge [13]. Afterwards, raters (or
coders) scan the text for the implicit or explicit discussion of each
feature before validating results using statistical methods to assess in-
terrater reliability [5]. The independent and qualitative performance
of deductive coding is subject to the biases of researchers.

Interrater reliability measures are used to assess the quality of the
classifications [18]. Interrater reliability is used to improve the trust-
worthiness of the deductive coding process and can be calculated us-
ing various statistics, the most common of which are Cohen’s kappa
and percent agreement among raters [19] [3]. Due to the prominence
of rater bias, LLMs are being explored within the deductive coding
process as both raters and validation metrics. Fleiss [7] expanded
Cohen’s kappa coefficient to represent interrater agreement amongst
more than 2 raters, allowing for stronger assessment of chance agree-
ment within groups of raters.

2.2 Utilization of LLMs for Deductive Coding

LLMs have the potential to act not only as an additional rater, but
as many additional raters because of their stochastic response nature.
Tai et al. [25] used LLM as a tool to identify 5 different characteris-
tics from interview-based textual data and found that the stochastic
nature of LLMs make them more effective as an increasing number
of iterations are performed. Despite this, the variability also reduces
consensus amongst prompt executions, such that Tai et al. suggest
using LLMs in the context of a Human-AI team to validate human re-
sponses. In this regard, Chew et al. developed an LLM-assisted con-
tent analysis process using gpt-3.5-turbo which showed significant
results in agreement with humans when assessing binary classifica-
tion codes while greatly reducing the time needed for analysis. Gi-
lardi et al. [11] [26] illustrated the capabilities of GPT-3.5 and GPT-4
in zero-shot natural language classification tasks, showing that it is
more accurate than crowdsourced coder’s even in novel applications.

3 Methods
In this section we describe our deductive coding method for ana-
lyzing case studies for evaluating LLM performance against human
coding standards. We subsequently describe the application of LLMs
using two prompting methods utilizing GPT-3.5 and GPT-4.
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Figure 1. Methodology for evaluating the performance of deductive
coding of Digital Twin literature by LLMs as compared to human coders

3.1 Deductive coding

Our deductive coding approach (Figure 1) was developed from on-
going work on developing digital twins at Colorado State University.
To characterize digital twins the research team developed a codebook
of 17 different digital twin (DT) characteristics adapted from Jones
et al. [15] (Table 1). 10 peer-reviewed case studies discussing the
development of digital twins were identified for coding. Deductive
coding was performed manually using a mixed team of three expert
and non-expert researchers according to the methods outlined in Elo
and Kyngäs [5] to analyze if the papers discussed each of the DT
characteristics. This human or manual coding was used as the gold
standard for assessing the performance of the LLM. The code of the
algorithm, list of documents analyzed, and supplemental analysis are
publicly available1.

The performance of the deductive coding approach was assessed
using interrater agreement, accuracy, precision, and recall. Percent
agreement was used to assess the overall reliability of the coding and
was calculated as shown in McHugh [19]. Success rate or accuracy,
precision, and recall of the LLM coding were used to evaluate in-
tra LLM performance. Recall is the rate of relevant retrievals by the
LLM to all relevant items while precision is the rate of relevant re-
trievals to all LLM retrievals. Accuracy is the total relevant retrievals
to the entire body of mined data. Accuracy, precision, and recall were
calculated as proposed by Witten et al. [27].

The percent agreement metric is limited as it does not account for
the possibility of chance agreements [19]. In addition, percent agree-
ment is less effective when employed in classification systems with
non-binary or hierarchical levels as the difference in ratings may have
variable magnitudes [12]. When using percent agreement as an inter-
rater reliability metric, higher standards must be achieved to address
the assumption that all agreements are not driven by chance, thus
it is recommended by Stemler [24] that a target percent agreement
of 90% should be achieved for the classifications to be considered
strong, especially when used with adjacent categories. Fleiss’ kappa

1 https://github.com/anti-integral/ECAI-Paper-Supplementary-Info



coefficient is known to be subject to paradoxical behavior, where the
kappa may be underestimated, even as percent agreement is high [6].
For the Fleiss kappa coefficient, Fleiss et al. [8] recommends a range
of 0.40-0.75 for fair agreement beyond chance, while at scores be-
low 0.40, agreement is primarily driven by chance agreements. Fleiss
Kappa (K) values were calculated using the kappam.fleiss function
from the irr v0.84.1 package for R 2023.12.1+402 [10].

Table 1. Digital Twin Characteristic used to test the performance of LLMs
for deductive coding of complex urban systems documentation

Digital Twin Characteristic for Coding
Physical Entity and Processes
Virtual Entity
Virtual Processes
Physical Environment
Virtual Environment
Realization
State
Metrology
Fidelity
Parameters
Twinning Rate
Physical-to-Virtual (P2V) Connection
Virtual-to-Physical (V2P) Connection
Use Cases
Perceived Benefits
Data Ownership
Scope

3.2 LLM Utilization

Two LLM prompting approaches were used for comparison, along
with two LLMs. Through the OpenAI API Text was extracted
from Adobe Acrobat PDF formatted files of the publications us-
ing PyPDF2. Multiple verification processes and Optical Character
Recognition technology were employed from Python’s PyTesseract
library, enabling more effective analysis of scanned documents and
images compared to simply pulling the base text. Each text is scanned
independently and for only one DT characteristic at a time. Through
the openai Python API, the LLM instance is reset between each
prompt execution. The models used are OpenAI’s gpt-4-0125 and
OpenAI’s gpt-3.5-turbo-16k, both operated at a temperature of 0.7.

We address promoting specifically in our method as effective
prompting is quintessential when leveraging LLMs for detailed text
analysis, particularly with complex documentation. The quality of
outcomes generated by LLMs is heavily dependent on the specificity
and clarity of the prompts provided. Good prompting acts as precise
instructions to the model, directing its attention to the specific ele-
ments of the text that are most relevant for analysis. This is crucial
because LLMs, while highly capable, do not inherently understand
the context or the importance of certain academic nuances without
clear guidance.

In our methodology, we conducted extensive experimentation with
different prompt structures to determine the most effective ways to
engage with the LLMs. This experimentation involved:

1. Varying the Detail Level: We adjusted the complexity of the
prompts when analyzing full texts versus segmented chunks to ensure
that the model could maintain focus without being overwhelmed by
information.

2. Prompting for Explanations and Binary Classifications: We
specifically designed prompts that required the LLMs to explain their
reasoning before classifying characteristics as present (1) or absent

(0). This step was vital in validating the accuracy of the model’s text
interpretation against our analytical goals.

One of the most critical aspects of our prompting strategy was
the continual refinement of characteristic definitions provided to the
LLMs. We provided explicitly defined parameters to effectively parse
and interpret the content. These definitions included: A) Explicit In-
structions: Detailed descriptions of what constitutes a mention of a
particular characteristic, including examples of explicit and implicit
mentions. B) Contextual Clarity: Guidelines on the depth of analysis
expected, specifying how the model should derive conclusions from
the text, whether through direct mentions or inferred context.

Algorithms 1 & 2 show the methods we used for prompting the
LLMs. Method 1 passes the LLM the entire text in the form of text,
then for each characteristic, passes the body text along with the asso-
ciated prompt. Method 2 separates each paper into 500-word chunks,
passing each chunk to the LLM for deductive coding analysis. When
processing the texts, whether in full or by segments, our script passed
the codebook and request the LLMs to explain the presence or ab-
sence of each characteristic.

Algorithm 1 Whole text search takes as input StudySet, Codebook
1: for Text ∈ StudySet do
2: for Dim ∈ Codebook do
3: PASS Text to LLM
4: PROMPT LLM to find Dim in Text
5: if LLM = TRUE then
6: Dim← TRUE
7: end if
8: OutputTable(Text, Dim)← Dim
9: end for
10: RETURN OutputTable(Text)
11: end for

Algorithm 2 Chunk text search takes as input StudySet, Codebook
1: for Text ∈ StudySet do
2: TextChunk← list(Text(1 + 500i, 500 + 500i))
3: for Item ∈ TextChunk do
4: for Dim ∈ Codebook do
5: PASS Text to LLM
6: PROMPT LLM to find Dim in Item
7: if LLM = TRUE then
8: Dim← TRUE
9: else
10: Dim← FALSE
11: end if
12: OutputTable(Text, Dim)← Dim
13: end for
14: end for
15: RETURN OutputTable(Text)
16: end for

The following prompt was used for all models:

“Explain whether the parameter ’{parameter}’ is men-
tioned/directly talked about in the following text and provide
evidence from the text. If it does, briefly explain how (3-5 sentences
with 2̃ pieces of evidence); if it does not match, briefly explain why
the paper does not focus on it (1 sentence). Note that ’{parameter}’
is defined as ’{definition}’."

Return explanations were then converted into a Pandas
DataFrame, encoding the presence or absence of characteristics with
1s and 0s respectively as illustrated in Table 2.

Each model and prompting approach was executed 15 times for
each paper. The consensus result for each dimension was equivalent
to the mode of the LLM responses across all iterations for the spe-
cific dimension and paper, including the manual approach. The itera-



tion approach treated each LLM execution as an individual rater. The
number of raters (n) for the manual approach is equal to three; for the
consensus and iteration approaches n = 4 (3 manual raters + 1 LLM
consensus) and n = 18, respectively.

4 Results
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Figure 2. Intra-LLM Percent agreements across iterations of select
analyzed papers by model (iteration n=2..15)

Each LLM was found to have strengths and limitations and the
precise tuning of definitions was found to be critical; even minor am-
biguities could lead to significant variances in the results. By metic-
ulously adjusting the language used in our prompts, we managed
to minimize these inconsistencies and enhance the reliability of our
findings. Overall, the strategic use of prompted instructions and the
careful definition of terms were instrumental in harnessing the full
capabilities of LLMs for our research. This approach not only im-
proved the accuracy of our text analysis but also ensured that the

models could perform effectively within the specific context of Ur-
ban systems context related to digital twin technologies.

4.1 LLM Internal Variance

After 15 iterations and across all authors, the GPT-3.5 whole text
model and both GPT-4 approaches showed similar levels of internal
agreement, with the GPT-4 chunking model having the highest in-
ternal percent agreement range of 98% - 88%. Meanwhile, the GPT-
3.5 chunking model had the least internal agreement with a percent
agreement range of 71% - 73% across all papers, indicating high
levels of variability as almost 30% of data generated was erroneous
within itself, even when prompted the same. Figure 2 indicates a sam-
ple of the models’ internal percent agreement for select papers across
iterations.

4.2 Frequency of Classification

Across all dimensions and papers, the consensus of the manual
coders marked 86% of classifications as True. When taking the con-
sensus of the 15 iterations of each model, all models - barring the
GPT-3.5 chunking approach - generated a lower positive classifica-
tion rate. The consensus chunking approach utilizing GPT-3.5 clas-
sified all dimensions as True across all papers, with 71%-73% of all
iterations classifying as True. Due to the frequency of positive val-
ues from manual raters, GPT-3.5 chunk had very high percent agree-
ment with raters at 86%. Disagreement between the LLM and manual
coders was especially prevalent across certain parameters, especially
for the whole text models.

Figure 3 provides a representation of how frequently did each
LLMs method and human rater consensus identify the characteris-
tic of interest across all 10 papers across all 17 characteristics. We
found difference in classifications between human coders and LLMs
and between LLMs across all characteristics. The Physical-to-virtual
connection (P2V) dimension was manually rated as True for 90%
of papers by the consensus of human raters but the whole paper ap-
proach using GPT-4 did not find this dimension in any of the papers.
Similarly, both whole text approaches struggled to find evidence of
discussions on the twinning rate and metrology.

4.3 LLM and Manual Consensus Agreement,
Accuracy, and Robustness

The highest levels of total accuracy were achieved by the text chunk-
ing methods using GPT-3.5 and GPT-4 with at 86% and 81%, re-
spectively. Comparatively, the accuracy of the whole text models was
51% for GPT-3.5 and 54% for GPT-4, respectively. Figure 4 and Fig-
ure 5 presents the resulting performance of the LLM models as re-
lated to the consensus of the three human raters as the comparison
benchmark across all dimension classifications. Analyzing chunked
text with GPT-4 resulted in a 14% false negative (FN) rate and 6%
false positive (FP) rate, while the same model with full text produced
a 44% FN rate and 2% FP rate. These FP and FN rates resulted in
a recall of 84%, and accuracy of 81% for chunked text and a lower
recall of 49%, and reduced accuracy of 54% for whole text.

Adding GPT-4 chunked text results as an additional evaluator
showed higher agreement levels of 89% among all reviewers, in con-
trast, analyzing entire texts with the same showed lower agreement at
83%. GPT-4 proved more effective at accurately identifying positives
compared to GPT-3.5 when using the whole text approach, as shown
by the higher recall rate when using human consensus ratings as a



Table 2. Example Pandas DataFrame showing the presence or absence of characteristics with 1s and 0s respectively

Characteristic Response Encoding
Physical Entity and
Processes

The text directly talks about "Physical Entity and Processes" by discussing how digital twins and
AI can optimize water utility operations, which include physical systems like water treatment
plants and distribution systems. Evidence from the text includes ...

1

Virtual Entity The paper directly talks about the concept of a "Virtual Entity" under the guise of "Digital Twin"
technology, specifically in the context of optimizing energy savings in water supply systems
through dynamic pump station scheduling. Here are pieces of evidence from the text that support
this...

1

Virtual Processes The parameter ’Virtual Processes’ is not mentioned or directly talked about in the provided
text. The focus of the paper is on the application of Digital Twin (DT) technology for dynamic
pump station scheduling in water supply systems for energy optimization. Although the concept
of replicating physical entities in a virtual environment (a key aspect of ’Virtual Processes’)
is inherent in the use of DT technology, the specific term or a detailed exploration of ’Virtual
Processes’ as defined is not provided.

0

Realization The parameter ’Realization,’ as defined, is not directly talked about in the provided text. The
focus is primarily on the transformation of data into actionable insights, leveraging digital
technologies like AI and digital twins, and improving operational efficiencies in water utilities
through advanced technologies and data-driven decision-making. There is no explicit mention
of the methods in which the delta or difference in the parameters of the physical and digital
entities is determined and subsequently updated, modified, synchronized, or calibrated to ensure
consistency or reconciliation.
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Table 3. Precision and Recall of Models across all classifications using
consensus approach when compared to manual consensus results

Assessment GPT3.5 -
WP

GPT-
3.5 -
Chunk

GPT-4 -
WP

GPT4 -
Chunk

Precision 0.957 0.865 0.960 0.925
Recall 0.456 1 0.490 0.844

benchmark in Table 3. GPT-4 outperformed GPT-3.5 in the chunking
approach as GPT-4 proved to be much more precise, indicating that
it is has higher robustness as it can more effectively delineate rele-
vant and irrelevant information. The chunking approach for GPT-4
and 3.5 proved to have a much lower false negative rate, albeit at a
decrease to the precision of the model and an increase to the false
positive rate when compared to both GPT-3.5 and GPT-4 whole text
models.

The manual ratings achieved a Fleiss Kappa value of .397, indi-
cating fair agreement amongst manual raters, a statistically signifi-
cant difference from purely chance agreement. As shown in Table 4
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the Fleiss K values of the models when employed as a 4th rater in
the consensus approach decreased from the manual baseline. On the
other hand, using all 15 iterations as additional raters (thus n=18), in-
creased the Fleiss K values in all models except the GPT-3.5 chunk-
ing approach to moderate agreement levels amongst raters. The nega-
tive Fleiss K value of GPT-3.5 Chunks indicates agreement driven al-
most entirely by chance, which is echoed by the fact that the model’s
consensus for all classifications was True.

Text chunking using GPT-3.5 resulted in greater relative accuracy,
as compared with manual rating. Despite this, the GPT-3.5 chunking
approach appeared to have a positive bias in that there were no true
negatives were. Consequently, as prompted, it failed to adequately
determine the absence of any DT dimension potentially hallucinat-
ing or inaccurately interrupting the definitions of the codebook. With
this consideration, GPT-3.5 would likely have the highest variation
in performance given the positive classification rate of the dataset.

Table 4. Fleiss K values of Models with manual ratings using consensus
approach (n=4) and iteration approach (n=18)

Model Consensus Approach Iteration Approach
GPT-4 WP 0.195 0.544
GPT-4 Chunks 0.337 0.594
GPT-3.5 WP 0.157 0.442
GPT-3.5 Chunks 0.240 -0.044

5 Discussion
This study aimed to provide a comparative exploration of deductive
coding methods utilizing LLMs to address the time and variability
constraints of human coding of extensive textual documentation. We
found that in the context of coding digital twin characteristics in sci-
entific documents relating to urban systems that LLMs have demon-
strated potential to address these challenges and provide a viable
additional coder. Thereby providing an option for evaluating large
datasets and adding additional context for managing complex urban
environments.

Our methodology was designed to approximate the rigor of con-
ventional complex documentation analysis with the augmented ca-
pacities of artificial intelligence. In deploying LLMs, we aimed to re-
fine the coding process specifically within the domain of Urban sys-
tems applications. This application of LLMs is intended to augment
the speed and analytical precision with which complex scientific pa-
pers are classified and examined and thereby aid in the sustainable
management of urban system infrastructure. The findings suggest
when using text chunking strategies, GPT-4 coding results closely
align with human coding. These results suggest that LLMs can per-
form comparably to human coders when provided specific prompts

and tasks structured within the deductive coding process. Utilizing
LLMs as an additional coder could not only reduce the time and re-
source constraints associated with manual coding but provide a more
reliable source of coding as once the LLMs is trained it produces
compatible results. This suggests an application where AI-enabled
coding could substantially augment the document review workflow.

Moreover, our research highlights the importance of prompt de-
sign and the need for analyzing the semantic processing of LLMs. We
found that chunking may more closely resemble how humans process
language. Our research also found that all models failed to effectively
assess the presence or absence of a characteristic, leading to large dis-
crepancies between human and LLM classifications within a subset
of data. We however caution the readers on blanket application of the
findings from this study. The performance demonstrated was specific
to the codebook and prompting approach. Further research is needed
to consider and address the range of consensus found and research
would be beneficial to explore the specifics of how each GPT model
explained its findings. With greater understanding into the seman-
tic processing of LLMs, prompts and deductive coding codebooks
can be engineered for better LLM performance and explainability.
Whether these observed effects continue with later versions of the
OpenAI or other developed LLMs is an area of potential research.
Ultimately we found that given the high percentage of false nega-
tives that certain contextual scanning could lead to anomalous invest-
ments. So while LLMs present a viable tool, their application should
deployed with rigorous validation against human benchmarks.
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