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 The increasing intensity and frequency of water scarcity, carbon emissions, and climate 
risks pose critical challenges necessitating increased uptake of and a paradigm shift to energy- 
and climate-smart water desalination processes. Desalination, particularly through reverse 
osmosis (RO), is an energy-intensive process, predominantly (~99%) reliant on non-renewable 
fossil fuels. Additionally, the high energy demands and costs of conventional desalination 
methods pose economic challenges. This study employs metrics and a decision framework to 
enable and accelerate the energy efficiency, decarbonization, and cost-effectiveness of RO water 
desalination processes. Integration and optimization of advanced artificial intelligence 
(AI) algorithms, hybrid renewable energy (RE) sources, and storage systems are utilized to 
explore tradeoffs and identify paths to maximize energy efficiency, while minimizing cost,  
energy inputs, and carbon footprint (by at least 50%) using multi-source, multi-metric data, 
modeling and analysis of four (4) U.S. water desalination plants (Alameda County, Tampa Bay, 
San Antonio-SAWS, Kay-Bailey Hutchison). This robust data- and analytical-driven approach 
provides the necessary tools to desalination plants for a sustainable transition to 100% RE, and to 
local governments and utilities to expedite the approval processes and provide continued rebates 
and innovative financing programs. 

  
An essential step was analyzing various RE sources, such as photovoltaic panels, wind 

turbines, concentrated solar power, geothermal units, and hydro turbines; in addition, we 
examine battery storage systems to address the intermittency challenges associated with solar 
and wind energy. More specifically, we collected and sanitized information on top-of-the-line 
RE systems, including formulas for power generation, cost, carbon emissions, and specs. The 
feasibility of these diverse RE systems was assessed using 5 years of actual operational data 
from desalination plants including water production, energy consumption, water quality, and 10-
year historical hourly weather data, establishing optimization functions and constraints. 
  

In this research, to obtain optimal sizing of each RE system to satisfy the desalination 
plants’ energy demand, methods including predictive modeling for water production, energy 
consumption, and long-term weather forecasting have been used. The plant data is preprocessed 
to account for variables like weather changes, plant shutdowns, and maintenance using statistical 
and AI tools, which form the core of the approach. Various machine learning models, including 
SARIMA, Random Forest, XGBoost, and Gradient Boosting, are employed for forecasting. The 
research also estimates the energy production potential of each RE source, factoring in surplus or 
deficiency management through battery storage and utility grid interconnection. This strategy 
aligns RE generation with the anticipated energy demands of the plants, facilitating a 
comprehensive optimization strategy that includes sizing and load forecasting of water 
desalination plants through AI models. 
  



The results show that among AI models, Gradient Boosting and an innovative average 
method of XGBoost have the best accuracy. The Root Mean Square Error (RMSE) for weather 
prediction varied across different variables and locations. For temperature, with a range between 
-10.0-46.1ºC, the RMSE values were 3.37ºC for Alameda, 4.67ºC for SAWS, 3.47ºC for Tampa, 
and 3.62ºC for Kay-Bailey. In terms of Direct Normal Irradiance (DNI), measured within a range 
of 0-1,049 W/m2, the RMSE values were 189 W/m2 for Alameda, 234 W/m2 for SAWS, 199 
W/m2 for Tampa, and 204 W/m2 for Kay Bailey. For wind speed, spanning from 0-35.2 m/s, the 
RMSE values recorded were 1.72 m/s for Alameda, 2.48 m/s for SAWS, 2.79 m/s for Tampa, 
and 2.97 m/s for Kay-Bailey. For treated water flows, which range from 0-30 MGD, Alameda’s 
RF model showed 1.49 MGD, SAWS’s GB model 0.86 MGD, Tampa’s GB model 1.17 MGD, 
and Kay Bailey’s GB model 0.39 MGD. Finally, for energy consumption, Alameda’s RF model 
recorded an RMSE of 59,000 kWh (range of 0-1,000,000 kWh), SAWS’s RF model 711 kWh 
(range of 0-300,000 kWh), Tampa’s GB model 6,751 kWh (same range), while Kay Bailey’s GB 
model 10,185 kWh (range of 0-83,333 kWh). 

 
By harnessing AI and RE, a scalable, sustainable solution to water scarcity and carbon 

emissions challenges are explored in terms of costs when using RE mix of 50%, 75% and 100%. 
At a 50% RE mix, it could halve the current annual CO2 output, equating to a reduction of 16 
billion gallons or 16,000 metric tons of CO2, akin to the impact of planting 600,000 trees and a 
significant long-term cost reduction at the four plants. The methods explored and results 
described contribute to environmental conservation, and enhance economic sustainability in 
water management, highlighting plausible transitions and decision-making considerations for 
future desalination.  
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Introduction
● Clean Water and AI Enthusiast and Researcher, Scarsdale High School Junior
● Intern, National Renewable Energy Labs (since Fall 2022) and Millwood WTP (since April 2021)
● Founder and CEO of Day Zero Water (non-profit); founded April 2018
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Millwood WTP (GE Suez) in NY, 5th Grade Millwood WTP (Veolia) in NY, 11th Grade



Vision 
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● Vision
○ Resilient Water Supply Infrastructure  - Water Security and Energy Independence
○ Achieve Decarbonization and Reduce Cost in Water Desalination through Renewable Energy 

(RE) and Battery Storage proliferation
○ AI will help harbor the next wave of innovation in eco-friendly and efficient Desalination

● Uniqueness
○ Creation of an automated Energy Management System that can:

○ Process significant amount of input data 
○ Can automatically obtain data from users or APIs and run various modeling algorithms
○ Enables efficient decarbonization by using ML forecasting models & optimization algorithm 

to optimally align RE generation with energy demand on an hourly basis

Presenter Notes
Presentation Notes
Our vision for this research is driven by a goal of resilient water supply infrastructure, which is guided by the principles of water security and energy independence We have used advanced ML models and AI algorithms to achieve decarbonization and reduce cost of desalination through RE usage and battery storage.The uniqueness of our study is the creation of an automated Energy Management System, wherein for any water treatment facility, we can take various plant inputs, process it, automatically obtain relevant data through connected APIs, and run various ML models and optimization algorithms to come up with the most efficient decarbonization strategy for the plant.



Background
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Global Water Scarcity 
• According to U.N., 2 billion or 26% people lack 

access to clean water, which is expected to double by 
2050

• Global Warming and Population growth are 
exacerbating the issue resulting in diminishing fresh 
water supply

Problem Statement
• Desalination harnesses an abundant source of water, 

however, it is:

• Expensive; energy cost = 40%
• Results in significant carbon emission

Renewable Energy & Battery Storage
• Abundant RE source; can replace 100% electricity
• RE cost has reduced ~80% over the last decade
• Currently powers only 1% of Desalination
• High initial CAPEX & Intermittent nature of RE
• Battery storage: Facilitates the efficient utilization of 

RE, enabling grid stabilization, peak shaving, and 
load shifting

Gap in Research / Problem Statement
• Current studies use data that is either simulated or on 

a small scale
• Lack comprehensive assessment of multiple RE 

sources and optimization

Presenter Notes
Presentation Notes
Our study is driven by the global water crises and the lack of safe drinking water, both domestically and globally. In response to this issue, water desalination presents a formidable solution to water scarcity as it uses a widespread source of water, the oceans, to quench an ever-growing demand. However, the cost of desalination is significant and it consumes a plethora of energy to treat salt water, especially since electricity accounts for about 40% of the total cost of desalination.  This provides basis to utilize greener, more cost-effective renewable energy (or RE) systems, which have become exponentially more efficient over the last few years. Still, only about 1% of the total energy used by desalination plants is RE. Our study attempts to optimize the integration of hybrid RE and battery storage to replace traditional sources of energy in desalination plants, thus resulting in significant reduction in cost and carbon emissions. An interesting gap in literature we noticed was that most studies have used data that is either simulated or on a small scale. 



Research Overview
● Objective: Obtain the optimal system sizing of hybrid RE sources and battery 

storage using AI algorithms to decarbonize desalination
● Multi-objective of minimizing cost and carbon footprint (50-100% RE)
● Protects against energy and price volatility (energy independence)

● Real-life, mid-large size desalination plants are used to demonstrate 
effective decarbonization on a large scale

● Systems Evaluated: PV, CSP, Wind Energy, Hydro Energy, Battery Storage

● Methods include: (i) Sophisticated ML models to forecast water demand, energy 
consumption, and weather/environmental data; and (ii) Optimization algorithms 
to design an optimal RE and battery mix

7

Presenter Notes
Presentation Notes
The overall goal of our project is to improve the efficiency, cost-effectiveness, and environmental sustainability of desalination through renewable energy integration by finding the most optimal and practical mix of renewable energy systems to implement at commercial scale desalination plants in order to minimize both the cost and carbon emissions and obtain energy independence. This also protects against energy and price volatility.We were able to obtain data from 4 commercial mid-large scale desal plants in the US, located in Tampa Bay, San Antonio, Alameda County, and El Paso, and use the data to evaluate RE sources such as PV, CSP, Wind, Hydro Energy, and Battery storage. To make the study more realistic and match the future needs of plant, we conducted advanced forecasting using machine learning of various variables, such as weather data and data from the desalination plants.



Summary of Four Desalination Facilities
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The 4 U.S desalination plants in the study use ~75 million kWh of electricity, which if 
converted to 100% RE can result in annual carbon emissions reduction of 32,000 

metric tons, akin to benefit derived from planting 1.2 million trees  

Presenter Notes
Presentation Notes
Here is a chart summarizing the data we obtained from the 4 desalination plants. Interestingly, The desal plants use, in total, ~75 million kWh of electricity annually, which if converted to 100% RE can result in annual carbon emissions reduction of 32,000 metric tons, which is equivalent benefit derived from planting 1.2 million trees.



Systematic Framework / Methodology
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DATA PRE-PROCESSING

ENERGY DEMAND ENERGY SUPPLY

Water Desalination Facility Forecast 
Variables

GHI,
Temperature Wind Speed Steamflow, 

Hydraulic Head

Reservoir 
Temperature, 

Ambient 
Temperature

RE Sources Power 
Generation PPV Pw Phyd PgeoPcsp

System Type Huasun 0.7 
kW

GE 2.5XL 
2500 kW

NSD Small 
Hydro 

1-10 MW

NF EGS BINARY 
SYSTEM

Power 
Towers 
200 kW

 Hourly Weather Forecast
 Hourly Energy Usage
 Hourly Water Quality
 Hourly Temperature, 

Pressure, etc.

 Water Production

 Energy Demand (PFC)

IN
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T 
VA
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S

BATTERY STORAGE (600 kW units with 8hr storage)

LCOE

CO2 EMISSIONS

MULTI-OBJECTIVE

AI OPTIMIZATION MODELS

(minimize LCOE & CO2)

CONSTRAINTS 

1. NPV, Ncsp, Nw, Nhyd , Ngeo , Nbatt, Ninv , PFC ≥ 0 

2. RENEWABLE FRACTION (RF) ≥ 0 .5

RF= 

3. DEPTH OF DISCHARGE (DOD) OF BATTERY STORAGE ≤ 0.8

4. RO PLANT CAPACITY LIMITS

PFCmin ≤ PFC ≤ PFCmax

ENERGY COST (GRID)

CO2 EMISSIONS

 Optimal RE System Sizing 
(NPV, Ncsp, Nw, Nhyd , Ngeo, Nbatt, Ninv) 

 LCOE
 CO2 Emissions

ENERGY MANAGEMENT SYSTEM (EMS)

INPUT  BLUE

OUTPUT GREEN

FORMULA  YELLOW

CONSTRAINTS   YELLOW 

OTHER  PURPLE

LEGEND

Footnotes:
1) PFC is the energy demand of desalination plant.
2) Ppv, Pcsp, Pw, Phyd, Pgeo represent renewable energy generation from PV, CSP, WT, HT and GE, respectively.
3) Npv, Ncsp, Nw, Nhyd, Ngeo, Nbatt, Ninv represent the number of PV arrays, CSP units, wind turbines, hydro turbines, geothermal power plants, battery banks and 

inverters, respectively.
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Presenter Notes
Presentation Notes
We developed a novel Energy Management System that balances energy demand and supply. On the left we obtained detailed data from the desal plants to forecast their water production and energy consumption. The right side involves forecasting weather data, which we can use to model the energy generation of each renewable energy system. Both of these parts required comprehensive research to obtain the proper formulas, constants, and variables needed for our modeling. Finally, we plug in all our data to an optimization algorithm to find the optimal combination of decision variables or the quantity of renewable energy system needed to power the plant in different situations, which can be tailored for different situations and needs in order to maintain practicality. Proposed an EMS framework for optimal RE system sizing and decarbonization that match RE generation to power demand from the desal plantsProject water and energy demands of existing desalination processes using AI models.Estimate energy generation from various RE sources:Define formulas for power generation, cost, and carbon emissions of each RE and storage system.Determine Constants & Values for each system and obtained general constants from various database (NREL ATB Database; RE Vendors latest unit specs from GE, Huasun Solar, etc.).Variable inputs such as weather are predicted using AI models.Optimize the integration of renewable energy systems into desalination with AI algorithms with a multi-objective to reduce cost and carbon emissionIntroduced predictive analytics for optimizing RE source diversity for RO plants.Established formulas and assumptions for RE energy generation and storage.Analyzed cost and carbon emissions of different RE systems.Utilized ML for forecasting water production, energy demand, and weather.Proposed an EMS framework for optimal RE system sizing and decarbonization.- Enhance weather forecasting accuracy using sophisticated ML algorithms.- Develop advanced optimization models for RE system sizing in desalination.- Improve the efficiency, cost-effectiveness, and environmental sustainability of desalination through renewable energy integration.



Data Collection
● Desalination Plant Data

● Hourly/Daily/Monthly 5-year info on energy use, water flow, and quality metrics such 
as TDS, Turbidity, temperature, pH

● Weather / Environmental Data
● Hourly 20-year metrics including solar irradiance, wind speed, temperature, 

streamflow rate and hydraulic head from National Solar Radiation Database 
(NSRDB) and USGS WaterWatch

● Levelized Cost of Energy (LCOE) & Carbon Emissions of RE 
● NREL Annual Technology Baseline (ATB)

● High-end RE System Specs
● From various leading vendors of RE systems
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Presenter Notes
Presentation Notes
We obtained extensive 5-year data from 4 U.S. desal plants including hourly, daily, or monthly energy use, treated water flows, water quality metrics, and plant operating factors. In addition, we were able to obtain hourly climate data spanning 20 years consisting of variables like temperature, solar irradiance, wind speed from the NSRDB API and 15-minute-spaced hydro data spanning 5 years including discharge and hydraulic head from USGS WaterWatch. We also calculated the cost and associated carbon emissions of the renewable energy systems and were able to obtain specs from state of the art energy systems to model the future growth of the energy sector.



Sample of Data Collected
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Presenter Notes
Presentation Notes
Here are some visuals showcasing our desal plant data as well as weather data.What made forecasting a bit challenging were the spontaneous periods of downtime in the desal plants and the datas volatile nature, which make it hard for the models to accurately capture the trends. We also noticed some seasonality in the weather data, which influenced our choice of AI forecasting models.



RE & Battery Formulas; LCOE & CO2 Emissions

12

Formula Description
P pv = η inv · η B · η r · T c · A PV · I Photovoltaic Power Calculation
T c = (1 − β · (T cell − 25)) Cell Temperature Calculation
T cell = T a + I · (NOCT− 20)/800 Photovoltaic Cell Temperature Calculation
P w = 0. 5·ρ·A·v 3 ·C p / 1000 Wind Power Calculation
P cs = A · I · η sc · CF Concentrated Solar Power Calculation
P h = η h · ρ · g · h · Q/ 1000 Hydro Power Calculation
P GT = ηmc ∆T Geothermal Power Calculation
E b(t ) = E b(t− 1)+(P pv(t )+P w(t )+P cs(t )+P h(t )− P F (t)/η inv  )·η b

ch Battery Charging State (excess energy sold to the utility)
E b(t ) = E b(t− 1)− (P pv(t )+P w(t )+P cs(t )+P h(t )− P F (t )/ηinv )·η b

dch Battery Discharging State (demand > power generation)
E bmax = N batt · E bsc Maximum Battery Energy Capacity
E bmin = (1 − DOD) · E bmax Minimum Battery Energy Capacity
E bmin ≤ E b(t ) ≤ E bmax Battery Energy Capacity Constraint
LCOE = (CRF * CAPEX + FOM ) * 1000 / (CF * 8760) + VOM Levelized Cost of Energy (LCOE)

Presenter Notes
Presentation Notes
Here are the formulas we devised for renewable energy generation and battery charging and discharging as well as constants for the cost and associated emissions of each renewable energy system.



RE and Battery Assumptions 
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Parameter Unit/Value Parameter Unit/Value
PV Panel Power Rating 700 W Hydro Power Rating Varies kW
ηinv (Inverter Efficiency) 95% ηh (Efficiency of Hydro Turbine) 85%
ηB (Battery Efficiency) 100% ρ (Water Density) 1,000 kg/m³
ηr (Rated Solar Cell Efficiency) 22.50% g (Acceleration Due to Gravity) 9.81 m/s²
β (Temp. Coefficient of Efficiency) -0.37% h (Hydraulic Head) Varies m
Apv (Area of Each PV Module) 3.1 m² Q (Steamflow of Water) Varies m³/s
I (Average Daily Solar Irradiance) Varies kWh/m²/day CF (Capacity Factor Hydro) 62%
Ta (Ambient Temperature) Varies °C
NOCT (Nominal Operating Cell Temp) 44 °C Geothermal Power Rating Varies kW

m (Mass Flow Rate of Geothermal Fluid) 40 kg/s
Wind Turbine Power Rating 2,500 kW c (Specific Heat Capacity of Fluid/Water) 4.186 kJ/kg degree 
ρ (Air Density) 1.225 kg/m³ ∆T = Tgr − Ta (Reservoir less Ambient Varies °C
A (Rotor Swept Area) 11,310 m² ηgt (Efficiency of Geothermal System) 90%
v (Wind Speed) Varies m/s
Cp (Power Coefficient) 35% Battery Storage

Battery Power Capacity (BPC) 600 kW
CSP Power Output Capacity 200 kW Discharge Time 8 hours
A (Area of Solar Collector) 4,047 m² Battery Storage Capacity (BSC) 4800 kWh
I (Average Daily Solar Irradiance) Varies kWh/m²/day Depth of Discharge (DOD) 80%
ηsc (Efficiency of Solar Collector) 30.00% ηinv (Inverter Efficiency) 95%
CF (Capacity Factor CSP) 45% ηbch (Battery Charge Efficiency) 80%

ηbcch (Battery Discharge Efficiency) 100%

Note: (Constants are in blue , variables are in black)
Eb(t), Eb(t − 1) (Energy Stored in Battery at time t and t-1)PF(t) (RO Desalination Power Required)

Presenter Notes
Presentation Notes
Here we note assumptions of the constants of high-end renewable energy and battery systems we researched.



ML Modeling – Forecasting Water Demand, Energy 
Consumption and Weather/Environmental Data 

● Forecast of Daily Treated Water Flows and Energy Consumption
○ Data Used: Rainfall, Hours in Operation, Raw Water Flows, Backwash Water Usage, Peak 

Demand, Avg Turbidity, Max Turbidity.
○ Data Forecast: Water Flows, Energy Consumption.
○ Models Used: SARIMA, Random Forest, XGBoost, Gradient Boosting, Ensemble.

● Forecast of Weather Data (Climate & Hydro)
○ Why: To determine RE generation potential
○ Data Used: Temperature, Solar Irradiance, Humidity, Wind Speed, Discharge
○ Data Forecast: Solar Irradiance, Wind Speed, Temperature, Discharge
○ Models Used: XGBoost, LSTM, Linear/Polynomeal Regression.
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Presenter Notes
Presentation Notes
Now, moving on to the modeling section of this project, we separated this into two parts, the first of which is Forecast of the desal plant’s Treated Water Flows and Energy Consumption. To do this, we tried using many models, such as SARIMA, Random Forest, Gradient Boosting, and an Ensemble model. The other part was the forecasting of weather data and hydro data. We explored many models including XGBoost, LSTM, and Polynomial Regression.



AI Modeling – Forecasting Weather Data and Energy 
Consumption/Water Flows

● Daily or monthly data sourced from desalination plants
● Preprocessing and Feature Engineering: Log transformations, lag creation, train/test split
● Model Training

● Regression based models: Random Forest, Gradient Boosting, SARIMA (seasonal)
● Hyperparameter tuning through GridSearchCV (cross-validation) - tuned n_estimators, 

learning rate, max_depth, min_samples split, min_samples_leaf, bootstrap, max_features, 
subsample

● Model Forecast
● Used each model to obtain test set predictions
● Ensemble approach - averages model predictions to mitigate individual model biases

● Evaluation (for Tampa)
● Energy Consumption (range 0-300,000 kWh) – RMSE (GB) = 3,853 kWh; MSE = 1,107 kWh
● Treated Water (range 0-10 MGD) – RMSE (RF) = 1.26 MGD; MSE = 0.85 MGD

● Further Forecast and Application
● Used tuned Gradient Boosting model for projecting 5-year daily treated water output and 

energy consumption 15

Presenter Notes
Presentation Notes
When modeling of the desalination plant energy consumption and water flows, we first preprocessed the data and attempted some feature engineering, which consisted of applying logarithmic transformations (to target variables for normality), engineered lag features for energy consumption (to capture temporal dependencies), and splitting the data into an 80-20 train test proportion.We then employed Random Forest, Gradient Boosting, and SARIMA models for time series forecasting. To optimize the performance of our models, we conducted hyperparameter tuning through GridSearchCV (a cross-validation method).Next, we generated test set predictions using individual models and an ensemble model and then utilized the root mean squared error and mean absolute error to quantify our models’ accuracy. As shown, given our errors on the testing set, which were orders of magnitude smaller than the data ranges, our models performed very well.Finally, we used our best performing Gradient Boosting model to project water flows and energy consumption 5 years into the future.Notes:�n_estimators: This parameter controls the number of boosting stages to be run. Tuning this parameter helps in finding the optimal number of stages, balancing between underfitting (too few stages) and overfitting (too many stages).learning_rate: It determines the contribution of each tree to the final outcome. A lower learning rate requires more trees to model all the relations correctly, but it can lead to a more generalized model.max_depth: This parameter sets the maximum depth of the individual regression estimators. Controlling the depth of the trees helps prevent overfitting by limiting how complex each tree can be.min_samples_split: The minimum number of samples required to split an internal node. Adjusting this parameter helps control the number of samples necessary to create new nodes and can prevent overfitting by avoiding overly complex trees.min_samples_leaf: The minimum number of samples required to be at a leaf node. This parameter further helps in smoothing the model, especially in regression.max_features: The number of features to consider when looking for the best split. Tuning this can improve performance by reducing overfitting and increasing the diversity of trees.subsample: The fraction of samples to be used for fitting the individual base learners. Using a subset (<1.0) can lead to a reduction of variance and an increase in bias.Random Forest:n_estimators: Similar to Gradient Boosting, it's crucial for determining the number of trees in the forest. More trees can lead to better performance but also higher computational cost.max_depth: Limits the depth of each tree in the forest. A deeper tree can capture more complex patterns but might overfit.min_samples_split and min_samples_leaf: These parameters help control the tree's growth and ensure that it does not overfit by requiring a minimum number of samples to continue branching down or create a leaf.bootstrap: Whether bootstrap samples are used when building trees. Bootstrapping helps in improving the model's variance by introducing randomness into the tree building process.max_features: Determines how many features are considered for splitting at each node. It introduces randomness into the model and can be crucial for performance and preventing overfitting.bootstrap: Whether bootstrap samples are used when building trees. Bootstrapping helps in improving the model's variance by introducing randomness into the tree building process.
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Forecast Treated Water & Energy Consumption (Tampa Bay)

Total Treated Water (MGD) Daily Energy Consumption (kWh)

Presenter Notes
Presentation Notes
Here are our model’s predictions on our data’s testing set compared to the training data, showcasing our models’ strong accuracy.



● 5-year 15-minute spaced readings for Discharge (or Streamflow Rate) and Hydraulic Head
● Feature Engineering: Trend Analysis (moving averages), Seasonality Detection, Lag Features
● Lots of visuals done to analyze data trends and find the best modeling approach.
● Hybrid Modeling Approach

○ Linear/Polynomial Regression for Trend and Seasonality
○ XGBoost for Residuals: Used XGBoost on residuals from the linear regression model.
○ Combination of Forecasts: Combined predictions from both models to generate final forecasts

● Model Evaluation
○ Discharge (range 0-2000 m3/s): RMSE = 47.76 m3/s, MAE = 17.07 m3/s

● Forecasting: Forecast future values for the next five years using the trained hybrid model
● Incorporating Spikes: Analyzed data for spikes and incorporated this information into the forecast, 

aiming to improve the model’s forecast accuracy for outliers

AI Model Pipeline - Hydro Data
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Presenter Notes
Presentation Notes
To forecast hydro, we utilized a hybrid model combining linear regression and an XGBoost forecaster, which performed well, but had some trouble capturing the magnitude of spikes in the hydro flows, which we fixed by automatically inputting them in the predicted dataset.Moving on to the hydro data prediction, after minor data preprocessing and feature engineering, we tried to perform various visualizations to find the best models to forecast the data (which included utilizing moving averages, polynomial fitting, seasonality detection using Fourier transforms, and lag generation). We utilized a hybrid model combining linear regression and an XGBoost forecaster, (to capture both linear and dynamic trends). This model also performed well, although one limitation was that it had trouble capturing the magnitude of spikes in the hydro flows, which we attempted to replicate and manually input in the 5 year forecasted data.Data PreprocessingConverted datetime columns to the correct format and adjusted for time zones.Filled missing timestamps using forward-fill to ensure data continuity.Sorted data in ascending order and removed duplicates for data integrity.Feature EngineeringTrend Analysis: Utilized moving averages and polynomial fitting to capture the trend within the data.Seasonality Detection: Generated features based on datetime components like day of the week, month, and Fourier transforms to capture seasonal patterns.Lag Features: Created lagged features of the target variable to capture autocorrelation and incorporate past information into the models.Hybrid Modeling ApproachLinear Regression for Trend and Seasonality: Applied linear regression using trend and seasonality features to model the deterministic components of the series.XGBoost for Residuals: Used XGBoost on residuals from the linear regression model to capture non-linear patterns and anomalies.Combination of Predictions: Combined predictions from both models to generate final forecasts, ensuring both linear and non-linear aspects of the data are captured.Model EvaluationCalculated MSE, RMSE, MAE, and R2 metrics for both training and testing sets to assess model performance.Visualized actual vs. predicted values to qualitatively evaluate the model fit.ForecastingPredicted future values for the next five years using the trained hybrid model, adjusting for time zone changes.Incorporated analysis of spikes into the forecasting process to improve predictions for sudden changes.Incorporating SpikesAnalyzed data for spikes and incorporated this information into the forecast, aiming to improve the model's predictive accuracy for outliers.
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Forecast Streamflow (Tampa Bay - Bullfrog Creek) 

Streamflow (m3/s)

Presenter Notes
Presentation Notes
Here are the results for hydro models.



● Integrated a complex forecasting process into a Streamlit application
● Data Preparation and Preprocessing

● Fetched 20 year hourly climate data using NSRDB API - years 1998 to 2021
● Train-Test Split (Train: 1998-2016; Test: 2017-2021)

● Feature Engineering: Lag Features, Rolling Window Statistics, Differencing
● Model Training and Validation

● Parameter Tuning: Used random search to tune n_estimators, learning_rate, max_depth, 
min_child_weight, gamma, subsample, colsample_bytree, reg_alpha, reg_lambda

● XGBoost: Employs gradient boosting decision trees for predictive accuracy in complex datasets
● Prophet: Handles daily observations with strong seasonal effects, ideal for time-series forecasting
● Average Method: Simple approach, forecasts future values as the average of past observations
● Autoregressive Validation: Utilizes past data points as inputs to forecast future values

● Forecasting: Iterative Forecast + Optional Noise Injection
● Evaluation (Average Model for Tampa)

● Wind Speed (range 0-30 m/s): RMSE = 2.79 m/s, MAE = 2.19 m/s
● Temperature (range 0-35 ºC): RMSE = 3.47ºC, MAE = 2.39ºC
● GHI (range 0-1200 W/m2): RMSE = 198.64 W/m2, MAE = 110.82 W/m2

AI Model Pipeline - Climate Data
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Presenter Notes
Presentation Notes
Transitioning to our final modeling step, we decided to develop a comprehensive Streamlit localhost application, which has ample controls for the user to select the amount of data, location they want to fetch it from, and to perform visuals on the data. After splitting the data, we performed Feature Engineering, which included generating Lag Features (for temporal dependencies), Rolling Window Statistics (to capture trends and volatility), and Differencing (to achieve stationarity).Our Streamlit app facilitates the easy use of 3 models or model variants for time series forecasting: XGBoost, Facebook’s Prophet model, and an Average XGBoost variant. We devised the pipeline for the average variant by calculating the average year of data and analyzing the change in how each year differs from the average year. This is beneficial because it helps keep the scale and natural trends of the data when forecasting in the future.After performing hyperparameter optimization on our models, we performed autoregressive validation, which simulates the method of future forecasting in that it uses the past 24 hours of data to predict the next time step. The models performed very well, and our average variant was the best at capturing the data trends. We then forecast the data 5 years into the future.



Forecast GHI, Temperature, Wind Speed (Tampa Bay)
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• XGBoost Average Method Model
• Test data used to validate the accuracy of the training model
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Presenter Notes
Presentation Notes
Here are the results of the average model on the weather data. As you can see, we played around with the size of the training data to ensure the models accurately capture the data’s variance. 



Results: RE Generation Forecast & Error Rates
● Forecast future years’ temperature, wind speed and GHI (solar irradiance) were 

used to calculate renewable energy generation 
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Forecast Quantity Range Alameda RMSE SAWS RMSE Tampa Bay RMSE Kay Bailey RMSE
Temperature (◦ C) -10.0 to 46.1 3.37 4.67 3.47 3.62
Hourly GHI (W/m2) 0 to 1,049 189 234 199 204
Wind Speed (m/s) 0 to 35.2 1.72 2.48 2.79 2.97
Discharge (m3/s) RMSE/Range 2.2 (0 to 180) 4.0 (1 to 382) 1.4 (1 to 54) 4.5 (0.3 to 132)
Treated Water Flow (MGD) 0 to 30 1.49 0.86 1.17 0.39
Energy Consumption (kWh) RMSE/Range 59,000 (0 to 1,000,000) 711 (0 to 300,000) 6,751 (0 to 300,000) 10,185 (0 to 83,333)

Average Weather Values, Forecast  (2023-2025)

Site GHI 
(kWh/m2/day)

Wind Speed 
(m/s)

Temperature 
(°C)

Discharge 
(m3/s)

Tampa 5.52 5.91 23.26 0.6
SAWS 5.58 4.6 21.38 12.1
KBH 7.82 4.82 18.72 16.1

Alameda 6.77 3.88 16.11 0.6

3-Year Annualized Energy Generation Forecast
Site PV Wind CSP

Power Capacity of 1 unit (kW) 0.7 2,500 200
Tampa (kWh) 1,437 8,831,674 1,222,751
SAWS (kWh) 1,462 8,326,970 1,113,431
KBH (kWh) 2,056 5,317,925 1,560,330

Alameda (kWh) 1,752 2,129,060 1,350,030

Presenter Notes
Presentation Notes
The results show that the forecasted weather data simulated the actual data very well. The root mean squared percent error for the 4 plants for all variables other than solar irradiance was less than 10%, which is robust given the longevity of our forecast.



RE Gen. by Source & Power Consumption (Annual)
● Assumes 30,000 PV Modules (Blue) or 10 Wind Turbines (Orange) or 40 units/acres of CSP (Green) to 

satisfy/oversize energy needs of desalination plant (Red)
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Annual Energy 
Generation / Power  
Consumption Forecast 
for Tampa Bay 
Desalination Plant

Presenter Notes
Presentation Notes
Here, we initially sized single use RE systems to approximately satisfy energy needs of the desalination plants (in red). To satisfy 100% of the energy needs at the Tampa plant, which uses about 43 million kWh / year of energy we would need either 30,000 PV modules, 10 wind turbines, or 40 units/acres of CSP. Hydro energy did not show material potential at Tampa, so we excluded it from this analysis.



RE Gen. by Source & Power Consumption (Monthly)
● PV and CSP produce more consistent energy throughout the year, followed by wind energy which is 

lower in the summer months
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Presenter Notes
Presentation Notes
The next two chart show monthly and hourly trends of energy production and demand.We then reviewed seasonal RE generation patterns by visualizing monthly trends to analyze the variance in data. We noticed trends such as lower wind energy in the summer months and greater monthly volatility from hydro, which were in accordance with the input data.



RE Gen. by Source & Power Consumption (Hourly)
● During the day, PV and CSP have the greatest volatility, followed by wind energy*
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Presenter Notes
Presentation Notes
In this hourly chart, we noticed that PV and CSP have the greatest volatility throughout the day, followed by wind energy, which makes physical sense.
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Optimization Algorithms – RE & Battery Systems
Scope

● Develop a Streamlit or Flask interface for renewable energy system sizing for desalination
● Focus on Tampa site initially with future expansion in mind
● Output optimal units of PV, wind, CSP, hydro, battery banks, inverters to minimize costs and emissions

Methodology
● Minimize multi-objective loss function (L1, L2) while subject to a set of constraints in order to find optimal 

values for a set of decision variables -> aims to be practical and flexible for different sites
● Use ML models for accurate forecasting in desalination processes
● Evaluate photovoltaic, wind, CSP, hydro for cost and environmental efficiency
● Optimize using algorithms (NN, PSO-GWO) based on forecasted energy data

Technical Requirements
● Enable selection among renewable sources for user-specific optimization
● Integrate battery storage for energy management
● Allow users to set constraints like renewable energy percentage, storage usage, and space limitations

Optimization Details
● Objective: Efficient system sizing to meet desalination power needs
● Focus on minimizing LCOE and CO2 emissions
● Include constraints on renewable mix, battery depth of discharge, and plant capacity

Presenter Notes
Presentation Notes
Moving on to the final part of our paper, in the optimization process we plan to perform renewable energy system sizing that outputs the optimal number of units for our selected renewable energy sources to minimize cost and carbon emissions, while subjecting the process to constraints in order to ensure practicality. We also integrate our machine learning models to forecast water production, energy consumption, and weather patterns, such that users can carry out the entire data analysis, forecasting, and optimization process in one interface tailored to their needs. We currently have implemented a neural network based optimizer in code as well as a more in depth one which uses Particle Swarm Optimization to optimize the number of each RE source for the Tampa plant.
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Scenarios and Optimization Constraints 
Scenarios
1. Min 50% RE (max energy purchases from the utility = 49.9%) and battery
2. 100% hybrid RE (no energy purchases from utility)

Constraints
1. Npv, Nw, Ncsp, Nhyd , Ngeo , Nbatt , Ninv ≥ 0
2. Renewable Fraction (RF) ≥ 1.0  or 0.5 (based on scenario 1 or 2)                                       

RF = (PPV + Pcsp + Pw + Phyd + Pgeo) / PFC

3. DEPTH OF DISCHARGE (DOD) OF BATTERY STORAGE = 0.8 
4. RO PLANT CAPACITY LIMITS 

PFCmin ≤ PFC ≤ PFCmax 

Presenter Notes
Presentation Notes
To ensure a broader range of use, we implemented two scenarios of optimization: the first which uses somewhere in between 50-100% renewable energy and fills the rest of the demand with energy from the utility, and the second which used 100% renewable energy and battery storage to capture excess energy.Also listed are some of the constraints we implemented.



Limitations

● Forecasted water/energy/weather data will not be 100% accurate

● We did not account for plant downtime in model training for energy 

consumption and water flows

● This study takes into account PV, Wind, CSP, Hydro Energy and Battery 

Storage; future Studies can include Geothermal Energy and Hydrogen 

Storage

27

Presenter Notes
Presentation Notes
Despite our broad impact, our study had some limitations.First, our forecasted variables will not be 100% accurate, however, they still capture the idea of modeling the desal plant’s future needs.Also, our study could include other RE sources such as Geothermal as well as hydrogen storage which can be explored in future study.



Conclusion
● Key Achievements

○ Established a robust framework and formulas for optimizing renewable energy integration in 
desalination

○ Water production, energy consumption, and weather forecasting using AI models to calculate 
RE generation, and optimization algorithims for optimal RE mix

○ Utilized real-world data to offer tangible insights and actionable recommendations

● Future Study
○ Improve accuracy of AI models to forecast weather, energy consumption, and water flows
○ Perform sensitivity analysis for optimization mix of RE system and battery storage
○ Automate our Energy Management system so it can be implemented at any desalination plant 

or other industries by inputing some basic information
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Presenter Notes
Presentation Notes
In conclusion, we were able to establish a robust framework and formulas for optimizing renewable energy integration in desalination, by creating various time series forecasting pipelines based off of real word data.In the future, we could work on improving the accuracy of our forecasting models, performing a sensitivity analysis on their results, and further automate our energy management system by creating a more comprehensive and robust optimization interface, which can be tailored and used by various desalination plants.



Thank You!
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Presenter Notes
Presentation Notes
And that’s the presentation, thanks for listening!
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