Synchronized Swimming: Framing the Digital Twin for Urban Water Systems

Josh Rodriguez Om Sanan Steven Conrad 26 September 2024

Advancing a More Sustainable Water Future

Colorado State University

Framing the Digital Twin for Urban Water Systems

Josh Rodriguez is a PhD student at CSU studying Systems Engineering. His research centers on using digital twins to explore the potential for flexible operations of desalination systems in response to electric grid states.

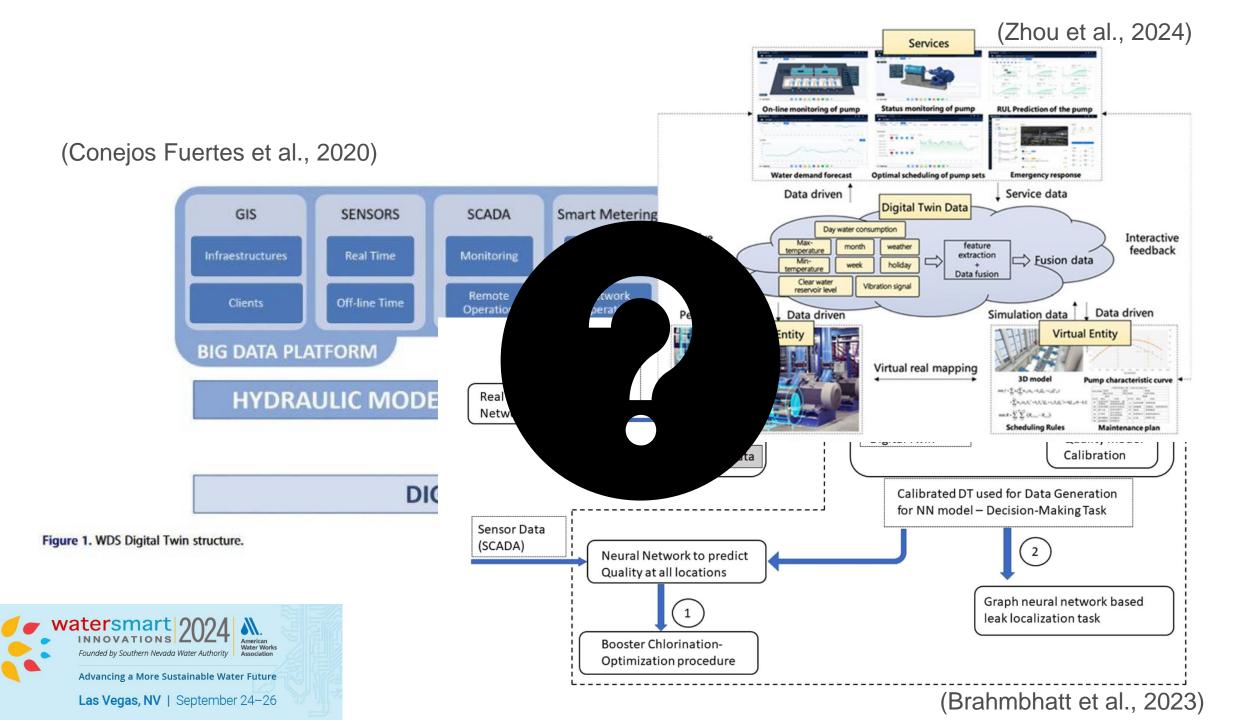
Advancing a More Sustainable Water Future

Om Sanan is a senior at Scarsdale High School in New York and is a water treatment researcher. He founded nonprofit Day Zero Water in 2018 and has interned with NREL, NASA, and MIT. His research focuses on water desalination and the energy-water nexus.

Synchronized Swimming: Framing the Digital Twin for Urban Water Systems

Josh Rodriguez Om Sanan Steven Conrad 26 September 2024

Advancing a More Sustainable Water Future

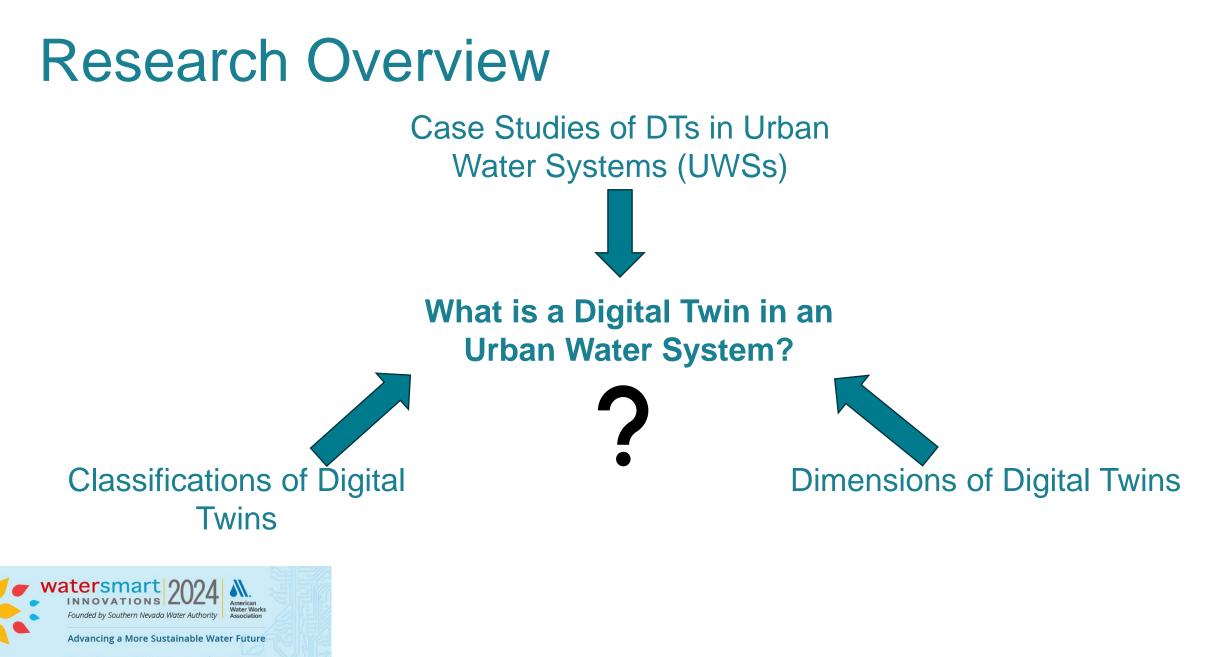

Colorado State University

Agenda

- Problem and Objectives
- Background of Digital Twins
- Digital Twin Dimensions and Classifications
- Methods
- Results
- Conclusions and Discussion

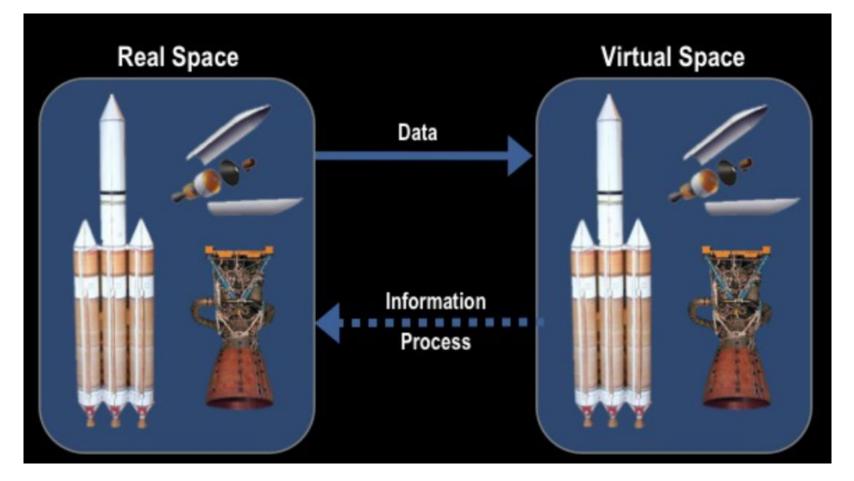
Challenges

The varied Digital Twin (DT) definitions and structures in literature and practice introduce confusion and make it difficult to design and implement a DT


Objectives

Understand the dimensions of the Urban Water System (UWS) DTs

Delineate between different classifications of digital twins


Visualize the decision points for selecting a DT archetype

Las Vegas, NV | September 24-26

What is a Digital Twin (DT)?

Figure 1 (Grieves, 2014)

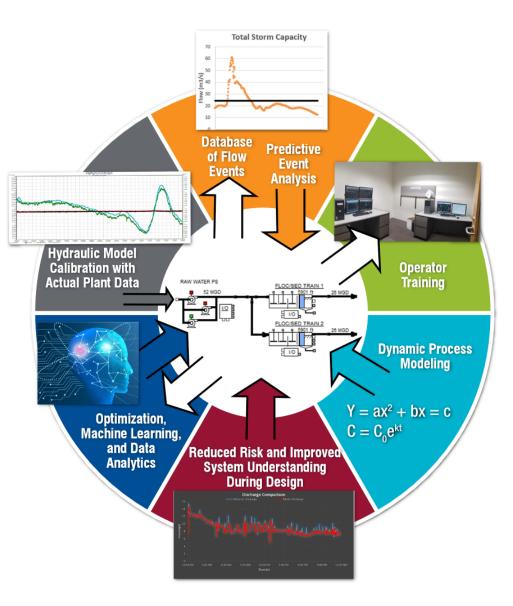
DTs in Urban Water Systems (UWS)

"A **digital**, **dynamic system** of real-world entities and their behaviors using **models with static and dynamic data** that enable insights and interactions to drive actionable and optimized outcomes."

-Karmous-Edwards et al., 2022; pg.78

Why use a DT?

Compared to simulations, DTs:


- Have higher fidelity
- Broader scope
- Mimic system operations

DTs in UWS can be used for:

- Asset management
- Model-based fault detection
- Early warning systems
- Sensor validation
- Simulation of system behavior

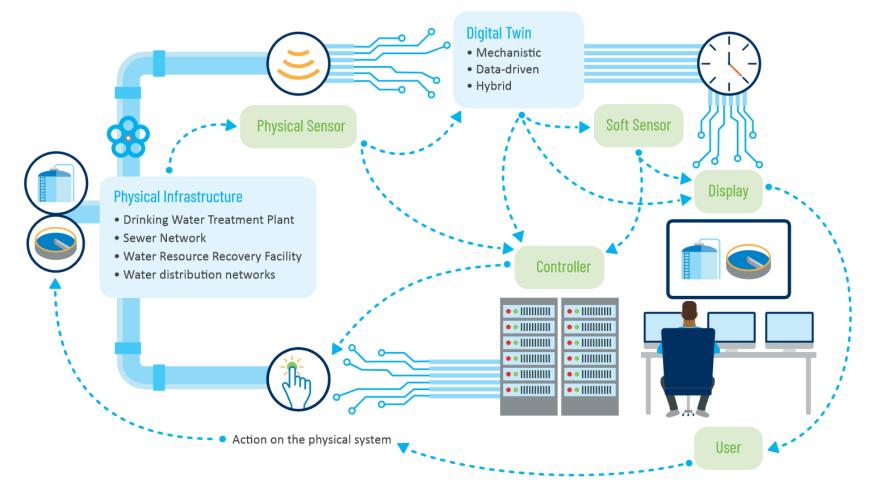

(Ramos et al., 2023) (Kritzinger et al., 2019)

Figure 2: A Digital Twin Forms a Central Repository for Information and Provides a Basis for Analysis for Treatment Facilities (Curl et al., 2019)

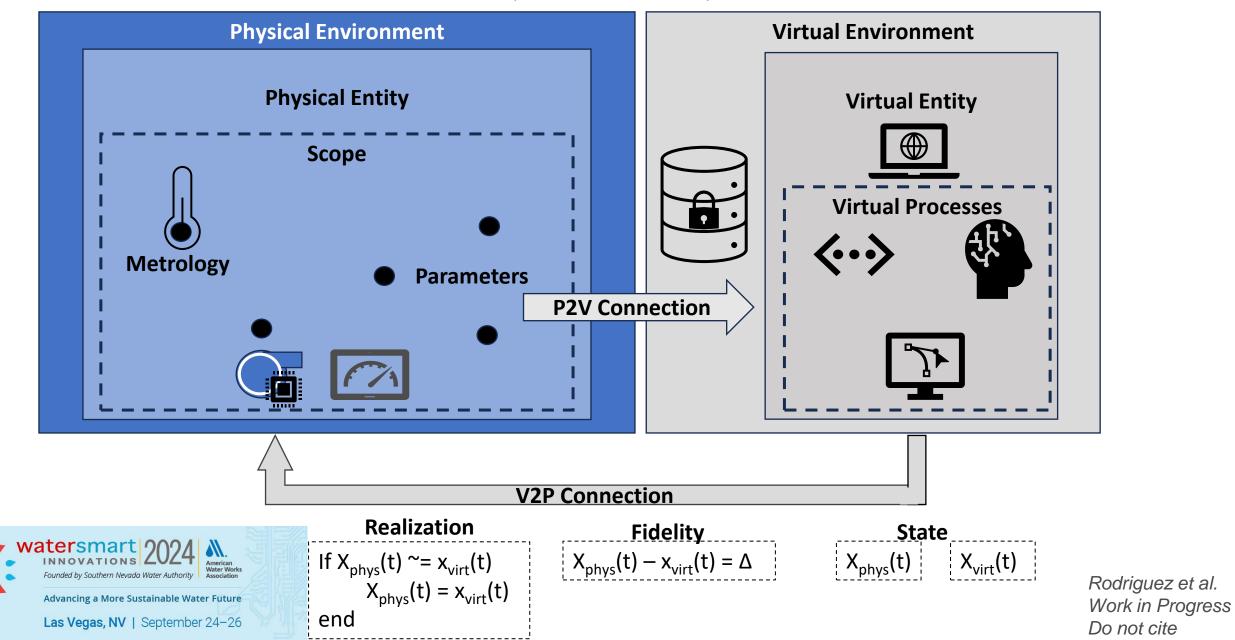
What is a Digital Twin (DT)?

Figure 3: Basic structure of a digital twin application (Valverde-Perez et al., 2021)

DT Dimensions

wate

Advancing a More Sustainable Water Future


Las Vegas, NV | September 24-26

/ /

Virtual System	Physical System	Interface	
Fidelity	Metrology	Data Ownership	
Realization	Perceived Benefits	Parameters	
Twinning Rate	Physical Entity and Processes	Realization	
Virtual Entity	Physical Environment	State	
Virtual Environment	Use-Cases	Physical-to-Virtual (P2V) Connections	
Virtual Processes		Virtual-to-Physical (V2P) Connection	
Smart 2024 American VATIONS 2024 American Vy Southern Nevada Water Authority	Table 1: Dimensions o(Jones et al., 2020)	f a digital twin, adapted fro	

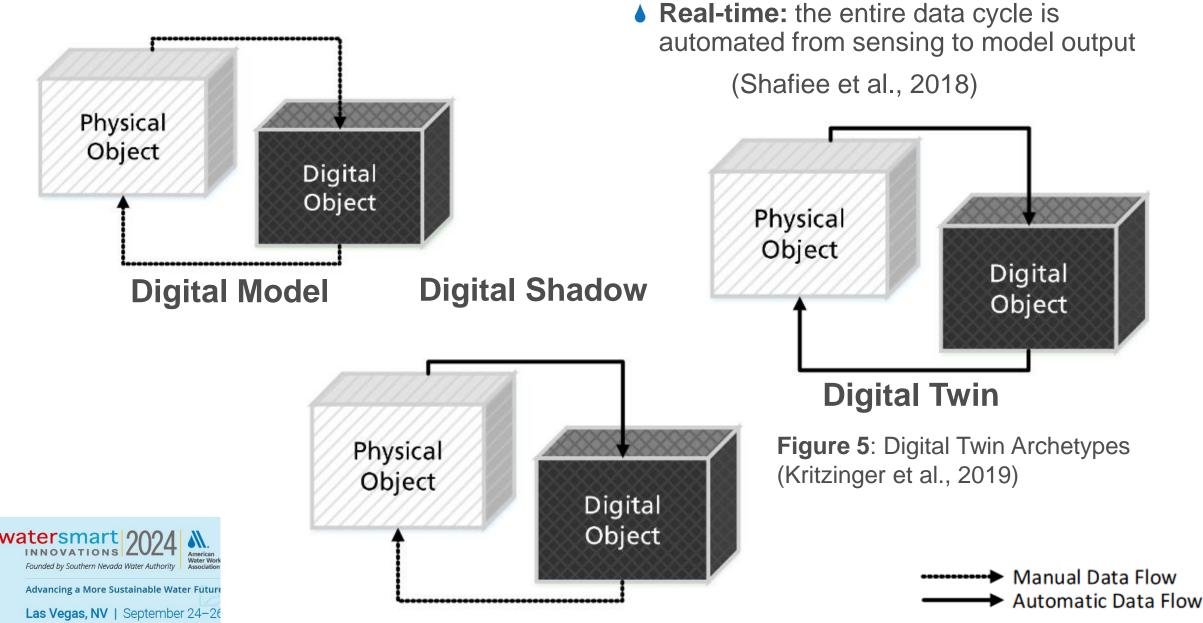

DT Dimensions

Figure 4: Subset of dimensions of a digital twin, adapted from (Jones et al., 2020)

Kritzinger et al., 2019

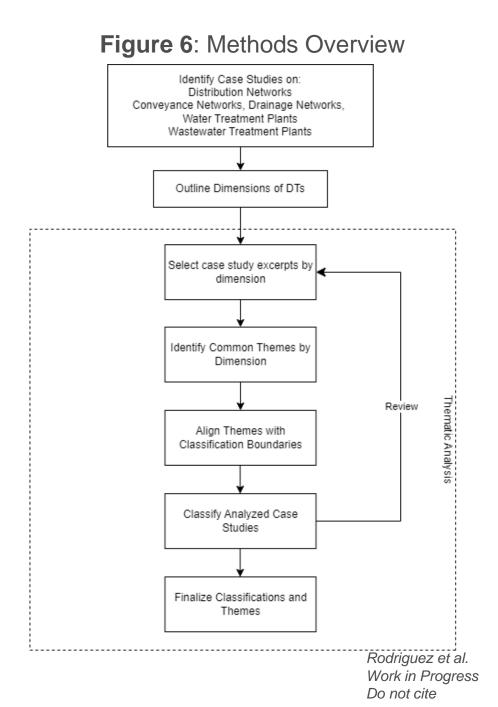
Classifying DTs

Classifying DTs

- Digital Twins have a voice in system operations
 - Directly changes (or proposes changes to) the physical system
- Digital Shadows mimic system operations and provide a test environment
- Digital Models provide a test environment

Table 2: Digital twin archetype characteristicsadapted from (Kritzinger et al., 2019)

Digital Models	Digital Shadows	Digital Twins
No real-time data	Real-time data	Real-time data
Calibrated using historical data	Calibrated using real- time data	Calibrated using real- time data
User-defined operational scenarios	User-defined operational scenarios	DT-defined operational scenarios
User tests scenarios in DT environment	User tests scenarios in DT environment	DT test scenarios and presents results


No integration	Unidirectional	Bidirectional	
			Rodriguez et al.
			Work in Progress
			Do not cite

Methods Overview

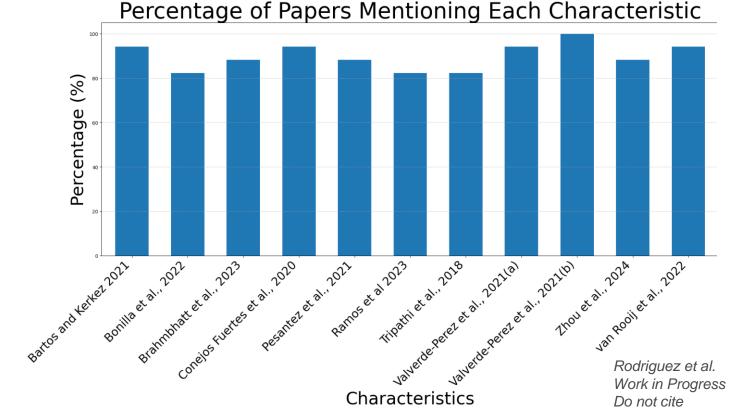
Analyzed 11 case studies of Digital Twins in Urban Water Systems

- Aim: Harmonize classification framework for UWS DTs
- Considered only current implementations, not planned improvements

Samples Analyzed

Table 3: List of UWS Case Studies

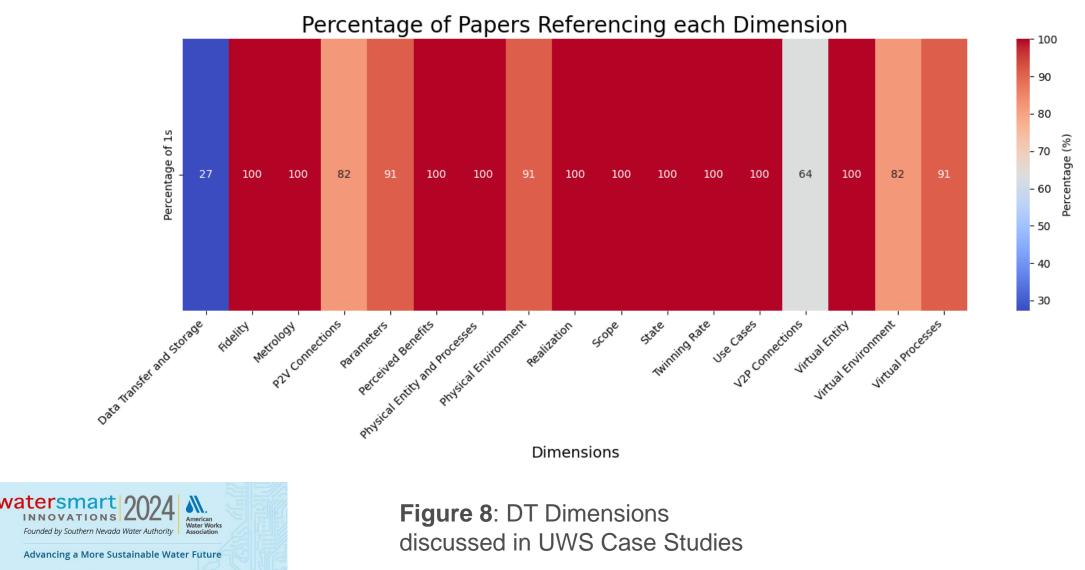
Case studies were analyzed for common characteristics within the DT dimensions


Excerpts describing DT dimensions were pulled for later thematic analysis

AUTHORS	YEAR	PUBLICATION TYPE	PHYSICAL ENTITY		
Conejos Fuertes et al.	2020	Academic Journal	Distribution Network		
van Rooij et al.	2022	Academic Journal	Reverse Osmosis		
Tripathi et al.	2018	White Paper	Distribution Network		
Pesantez et al.	2021	Academic Journal	Distribution Network		
Valverde-Perez et al.	2021(a)	White Paper	Sewer Network		
Valverde-Perez et al.	2021(b)	White Paper	Water Treatment Plant		
Zhou et al.	2024	Academic Journal	Pump Station		
Ramos et al.	2023	Academic Journal	Distribution Network		
Bonilla et al.	2022	Academic Journal	Distribution Network		
Bartos and Kerkez	2021	Academic Journal	Drainage System		
Brahmbhatt et al.	2023	Academic Journal	Distribution Network		

Dimensional Analysis

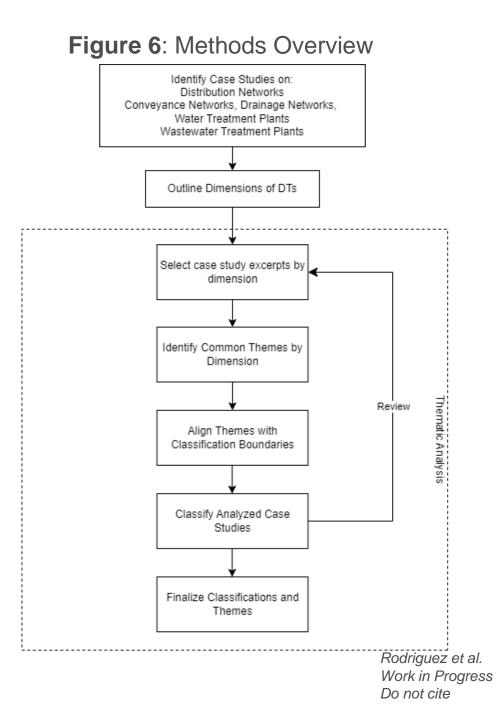
- Manually reviewed each case study for 17 DT dimensions
- Quantified prevalence of dimensions across case studies
- Identified fundamental dimensions present in >90% of studies
- Analyzed dimension coverage in individual case studies


Figure 7: Alignment of UWS DT Discussions with DT dimensions

a More Sustainable Water Future

Las Vegas, NV | September 24–26

Dimensional Analysis


Las Vegas, NV | September 24-26

Thematic Analysis

- Conducted thematic analysis across case study excerpts
- Identified common themes within each dimension
- Resulted in 56 common themes across 17 dimensions
- Mapped themes to specific case studies

Thematic Analysis

watersmart

Founded by Southern Nevada Water Author

Advancing a More Sustainable Water Future

Las Vegas, NV | September 24-26

۵۱.

American Water Works

Dimensions Realization	DT Subsystem	Themes							
	Interface	Manual Realization	Automatic Realization	Updating Virtual Operating Parameters	Updating Physical Operating Parameters				
V2P Connections	Physical System	Operator Data Presentation	Actuators/Automatic Control**						
Virtual Environment	Virtual System	Integration with Databases	Multiple Models						
Fidelity	Virtual System	Continuous Calibration	Manual Calibration						
Twinning Rate	Virtual System	Minute-scale	Hour-scale	Historical data	Real time data				
Scope	Virtual System	Single Parameter in Scope	Multiple Parameters in Scope	Subset of Physical System	Entire Physical System				
P2V Connections	Virtual System	Data Preprocessing	Direct to DT						
Use Cases	Virtual System	Operational Monitoring and Forecasting	Real-time Optimization	What-if analysis and master planning					
Perceived Benefits	Physical System	Cost and Energy Efficiency	Informing Planning and Design	Improved Resilience	Training				

Table 4: Subset of DT Dimensions with UWS Themes

Thematic Analysis

watersmart 9

Founded by Southern Nevada Water Author

Advancing a More Sustainable Water Future

Las Vegas, NV | September 24–26

American Water Works

Dimensions	DT Subsystem	Themes							
Realization	Interface	Manual Realization	Automatic Realization	Updating Virtual Operating Parameters	Updating Physical Operating Parameters				
V2P Connections	Physical System	Operator Data Presentation	Actuators/Automatic Control**						
Virtual Environment	Virtual System	Integration with Databases	Multiple Models						
Fidelity	Virtual System	Continuous Calibration	Manual Calibration						
Twinning Rate	Virtual System	Minute-scale	Hour-scale	Historical data	Real time data				
Scope	Virtual System	Single Parameter in Scope	Multiple Parameters in Scope	Subset of Physical System	Entire Physical System				
P2V Connections	Virtual System	Data Preprocessing	Direct to DT						
Use Cases	Virtual System	Operational Monitoring and Forecasting	Real-time Optimization	What-if analysis and master planning					
Perceived Benefits	Physical System	Cost and Energy Efficiency	Informing Planning and Design	Improved Resilience	Training				

Table 4: Subset of DT Dimensions with UWS Themes

Classifications

AUTHORS	YEAR	PHYSICAL ENTITY	CLASSIFICATION
Conejos Fuertes et al.	2020	Distribution Network	Digital Twin
van Rooij et al.	2022	Reverse Osmosis	Digital Model
Tripathi et al.	2018	Distribution Network	Digital Model
Pesantez et al.	2021	Distribution Network	Digital Model
Valverde-Perez et al.	2021(a)	Sewer Network	Digital Twin
Valverde-Perez et al.	2021(b)	Water Treatment Plant	Digital Shadow
Zhou et al.	2024	Pump Station	Digital Model
Ramos et al.	2023	Distribution Network	Digital Model
Bonilla et al.	2022	Distribution Network	Digital Model
Bartos and Kerkez	2021	Drainage System	Digital Shadow
Brahmbhatt et al.	2023	Distribution Network	Digital Twin

 Table 5: Classification of UWS DT Case Studies

	Multiple Models	Updating DT Parameters	Updating Physical Operating Parameters	Manual Realization	Automatic Realization	Continuous Calibration	Manual Calibration	Real time	Historical Data	Subset of Physical System	Entire Physical System	Remote - Direct to DT	Actuators/ Automatic Control	Operator Data Presentation
DM	50%	83%	0%	83%	17%	17%	83%	0%	100%	50%	33%	17%	0%	50%
DS	50%			0%			100%	50%	50%	0%	100%	100%		100%
DT	33%	100%	100%	33%	67%	100%	67%	67%	33%	0%	67%	100%	0%	100%

Table 6: Heatmap of DT characteristics across archetypes

Results

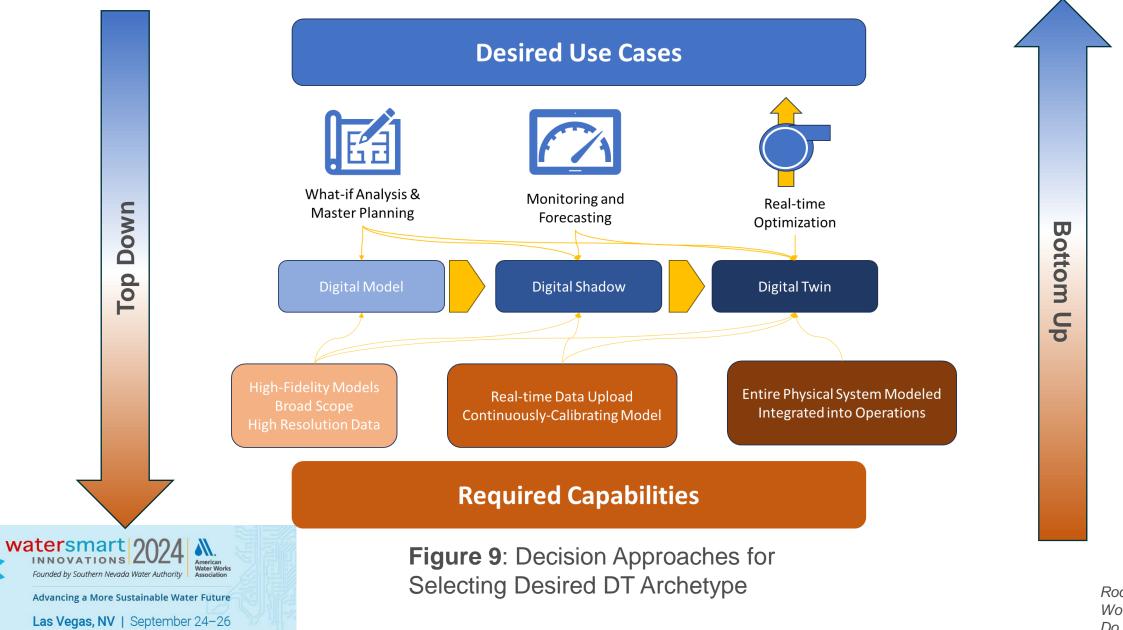
Digital Twin is utilized most for real-time optimization of system and development of control schemes

 All archetypes realize common benefits, regardless of the desired use case

 watersmart
 2024

 INNOVATIONS
 2024

 Founded by Southern Nevada Water Authority
 American Sosociation


 Advancing a More Sustainable Water Future

 Las Vegas, NV
 September 24–26

		USE CASES		PERCEIVED BENEFITS			
	Monitoring and Forecasting	Real-Time	What-if analysis and	Cost and Energy Efficiency	Informing Planning	Improved Resilience	Training
Digital Models	17%	0%	83%	50%	67%	67%	17%
Digital Shadows	100%	0%	50%	50%	50%	50%	50%
Digital Twins	100%	100%	33%	33%	67%	100%	33%

Table 7: Heatmap of DT Use Cases and Perceived Benefits across archetypes

Takeaways

Takeaways

Current State of UWS DTs:

- Many self-described "digital twins" lack the integration to be considered a digital twin
- The perceived benefits from classified DMs are misaligned with model capabilities
 - DMs can be employed as training tools to study potential system shocks
- DT development in UWS still in infancy, currently centered at lower integration levels
- Standardizing the language of DTs around a classification approach will help to better determine development frameworks, costs, and potential uses and benefits
- Current Gaps:
 - Social and technological challenges with reaching autonomous DTs
- Future Directions:
 - Need for standardization and best practices in UWS DT implementation
 - Analysis of the cost-benefits of each DT archetype, including more autonomous DTs

Project Partners

National Alliance for Water Innovation

Thank you!

Advancing a More Sustainable Water Future

For further questions, please contact: josh.rodriguez@colostate.edu

References

Curl, J. M., Nading, T., Hegger, K., Barhoumi, A., & Smoczynski, M. (2019). Digital Twins: The Next Generation of Water Treatment Technology. *Journal AWWA*, *111*(12), 44–50.

https://doi.org/10.1002/awwa.1413

Grieves, M. (2014). Digital Twin: Manufacturing Excellence through Virtual Factory Replication. *Michael W. Grieves, LLC*.

Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising the Digital Twin: A systematic literature review. *CIRP Journal of Manufacturing Science and Technology*, *29*, 36–52.

https://doi.org/10.1016/j.cirpj.2020.02.002

Karmous-Edwards, G., Tomić, S., & Cooper, J. P. (2022). Developing a Unified Definition of Digital Twins. *Journal AWWA*, *114*(6), 76–78. <u>https://doi.org/10.1002/awwa.1946</u>

Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital Twin in manufacturing: A categorical literature review and classification. *IFAC-PapersOnLine*, *51*(11), 1016–1022. https://doi.org/10.1016/j.ifacol.2018.08.474

Shafiee, M. E., Barker, Z., & Rasekh, A. (2018). Enhancing water system models by integrating big data. *Sustainable Cities and Society*, *37*, 485–491. <u>https://doi.org/10.1016/j.scs.2017.11.042</u> Sun, C., Puig, V., & Cembrano, G. (2020). Real-Time Control of Urban Water Cycle under Cyber-Physical Systems Framework. *Water*, *12*(2), 406. <u>https://doi.org/10.3390/w12020406</u>

References – Case Studies

Bartos, M., & Kerkez, B. (2021). Pipedream: An interactive digital twin model for natural and urban drainage systems. *Environmental Modelling & Software*, *144*, 105120. https://doi.org/10.1016/j.envsoft.2021.105120 Bonilla, C. A., Zanfei, A., Brentan, B., Montalvo, I., & Izquierdo, J. (2022). A Digital Twin of a Water Distribution System by Using Graph Convolutional Networks for Pump Speed-Based State Estimation. *Water*, *14*(4), 514. https://doi.org/10.3390/w14040514 Brahmbhatt, P., Maheshwari, A., & Gudi, R. D. (2023). Digital twin assisted decision support system for quality regulation and leak localization task in large-scale water distribution networks. *Digital Chemical Engineering*, *9*, 100127. https://doi.org/10.1016/j.dche.2023.100127 Conejos Fuertes, P., Martínez Alzamora, F., Hervás Carot, M., & Alonso Campos, J. C. (2020). Building and exploiting a Digital Twin for the management of drinking water distribution networks. *Urban Water Journal*, *17*(8), 704–713. https://doi.org/10.1080/1573062X.2020.1771382 Pesantez, J. E., Alghamdi, F., Sabu, S., Mahinthakumar, G., & Berglund, E. Z. (2022). Using a digital twin to explore water infrastructure impacts during the COVID-19 pandemic. *Sustainable Cities and Society*, *77*, 103520. https://doi.org/10.1016/j.scs.2021.103520 Ramos, H. M., Kuriqi, A., Besharat, M., Creaco, E., Tasca, E., Coronado-Hernández, O. E., Pienika, R., & Iglesias-Rey, P. (2023). Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks. *Water*, *15*(6), 1129. https://doi.org/10.3390/w15061129

Tripathi, S., Mack, M., Byland, A., Chamberlain, L., & Shumate, C. (2021). Houston Public Works' Journey Toward a Digital Twin. *Journal AWWA*, *113*(8), 80–84. <u>https://doi.org/10.1002/awwa.1793</u>

Valverde-Pérez, B. (2021). Operational digital twins in the urban water sector: Case studies. International Water Association.

Van Rooij, F., Scarf, P., & Do, P. (2021). Planning the restoration of membranes in RO desalination using a digital twin. *Desalination*, *519*, 115214. <u>https://doi.org/10.1016/j.desal.2021.115214</u>

Zhou, S.-W., Guo, S.-S., Xu, W.-X., Du, B.-G., Liang, J.-Y., Wang, L., & Li, Y.-B. (2024). Digital Twin-Based Pump Station Dynamic Scheduling for Energy-Saving Optimization in Water Supply System. *Water Resources Management*, *38*(8), 2773–2789. <u>https://doi.org/10.1007/s11269-024-03791-2</u>

