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Abstract

Urban systems are managed using complex textual documentation that need coding and analysis to set requirements
and evaluate built environment performance. This paper contributes to the study of applying large language models
(LLM) to qualitative coding activities to reduce resource requirements while maintaining comparable reliability
to humans. Qualitative coding and assessment face challenges like resource limitations and bias, accuracy, and
consistency between human evaluators. Here we report the application of LLMs to deductively code 10 case
documents on the presence of 17 digital twin characteristics for the management of urban systems. We utilize two
prompting methods to compare the semantic processing of LLMs with human coding efforts: whole text analysis
and text chunk analysis using OpenAI’s GPT-40, GPT-40-mini, and ol-mini models. We found similar trends
of internal variability between methods and results indicate that LLMs may perform on par with human coders
when initialized with specific deductive coding contexts. GPT-40, o1-mini and GPT-40-mini showed significant
agreement with human raters when employed using a chunking method. The application of both GPT-40 and GPT-
40-mini as an additional rater with three manual raters showed statistically significant agreement across all raters,
indicating that the analysis of textual documents is benefited by LLMs. Our findings reveal nuanced sub-themes
of LLM application suggesting LLMs follow human memory coding processes where whole-text analysis may
introduce multiple meanings. The novel contributions of this paper lie in assessing the performance of OpenAl
GPT models and introduces the chunk-based prompting approach, which addresses context aggregation biases by
preserving localized context.

Impact Statement

Large Language Models (LLM) offer the ability address the large volume of textual data ever present in
the management the urban environment. LLMs may offer the ability to organize documents according
to a predefined set of classifications and reduce the burden on humans to sort and group text. This
research guides the application of LLM for the classification of unstructured, textual data within the
management of urban systems. It offers guidance on the volume of context given to LLMs in a single
prompt. This research compared a fixed-size chunking approach with a control approach across three
different models of OpenAI’s GPT showing that LLMs perform more like humans when using chunked
prompting. Furthermore, this research shows that prompting approach differences are most apparent
with general LLMs (GPT-4, GPT-o1). GPT-40-mini, a reasoning LLM, showed limited differences in
measures between a text-chunking approach and whole paper analysis. Overall, this research shows that
using a text-chunking approach for coding documents will increase overall human-like performance for
general LLMs.


Steve.Conrad@colostate.edu

2 Rodriguez et al.

1. Introduction

The management of Urban Systems — the interconnection of built environment, the natural environ-
ment, and society — involves complex textual documentation that requires persistent review to derive
requirements and performance standards. Architects and planners review codes and regulations to
ensure construction projects align with current standards. Water managers review environmental pro-
tection rules and scientific reports to ensure water quality, and policymakers review public consultation
documents, policy proposals, and research studies to assess urban development projects. Each of these
roles necessitates humans to read, digest, and semantically process hundreds of thousands of words to
deduce relationships and presence of content for a specific theme or premise. Accurate analysis of these
documents directly influences the execution of critical operational processes in urban systems and can
impact human welfare. Missteps in the coding process could lead to omissions or inaccuracies, poten-
tially skewing broader urban system designs and policy implementations. Substantially large data sets
may preclude analysis and remain unexamined.

Traditional methods for coding documentation, such as human deductive coding, presents resource
challenges and outcomes varies by human coder. Human coders present biases, variations in accuracy
and consistency (Gonzdlez Canché 2023). Manual textual analysis by humans is prone to notable
inconsistencies and errors, especially when managing large datasets or working with multiple coders
(Gonzilez Canché 2023). Humans are good at understanding complex meanings and context in texts
(Hillard et al. 2008), but the manual coding of extensive data sets can be challenging due to its
time and cost-intensive nature (Chang et al. 2021; Hillard et al. 2008) and consistent application of
rules across individuals (Baumer et al. 2017). Artificial Intelligence (Al) presents the opportunity to
enhance processes through human-Al teaming in domain-agnostic tasks (Klami et al. 2024). The recent
introduction of Large Language Models (LLMs) presents an opportunity for Urban Systems to reduce
the burdens of documentation management.

Within limits, pretrained LLMs show potential to augment deductive coding. Other forms of Al
have been shown for qualitative data tasks, such as content-based image retrieval (Desmond et al. 2021;
Marathe and Toyama 2018; Shim et al. 2023). For instance, LLMs can be used to for classification
and information retrieval from unstructured, text-based files (Devlin et al. 2019; Radford, Narasimhan
et al. 2018). LLMs, however, frequently focus on next-word prediction leading to propagated biases
and incoherent texts (Bender et al. 2021; Radford, Wu et al. 2019). In addition, LLMs are subject to
hallucinations or fabricating information due to false or inadequate training data and lacking knowledge
recall processes (L Huang et al. 2023). To combat this, Ouyang et al. (2022) utilized human input for
fine-tuning LLM responses using reward modelling and reinforcement learning to align LLM objectives
with operator goals. Raczynski et al. (2023) addressed issues of natural language model coherence
through the application of a transformer to increase explainability of the outputs of language models. In
addition, it has been shown that general language models perform better at extracting information from
text-based data than off-the-shelf language models when provided with prior knowledge enhancement
or a more technical training set (Y Huang and JX Huang 2023; Lee et al. 2020). These studies indicate
the need for adequate prompting before language analysis tasks.

The application of LLMs in qualitative research requires rigorous processes. Tai et al. (2024) stresses
the importance of establishing robust analytical practices and protocols. They note that prompts designed
to align with a codebook can effectively replicate traditional document classification methods. Expanding
on this, Xiao et al. (2023) explore using GPT-3 for deductive coding in qualitative research by integrating
LLMs with expert-developed codebooks containing document classification categories. Their method-
ology analyzes children’s curiosity-driven questions using codebook-centered and example-centered
prompts, testing variations in prompt complexity. They find GPT-3 achieved substantial agreement
with experts for question complexity and fair agreement for syntactic structure, with codebook-centered
prompts performing best. Moreover, Chew et al. (2023) investigate GPT-3.5 for deductive coding through
their LLM-Assisted Content Analysis framework which evaluates LLM performance in traditional qual-
itative workflows, emphasizing tasks such as co-developing codebooks, refining prompts, and testing
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reliability in line with human coding benchmarks. They conclude that LLMs achieved accuracy com-
parable to human coders but emphasized their role as tools to support, not replace, researchers. Prescott
et al. (2024) similarly test both Open AI’s ChatGPT 3.5 and Google’s Bard models in deductive coding
applications for SMS messages, finding poor consistency with humans.

In this paper we explore the application of LLMs to address the resource and consistency challenges
of humans coding complex documents. We utilize the context of managing urban systems as a test case.
We examine the premise that LLMs could reduce the burden of coding while maintaining reliability
comparable to human coders. Specifically, we investigate the use of OpenAl’s GPT-40, GPT-40-mini,
and ol-mini models to deductively code digital twin characteristics from literature on urban water
systems. We examine two semantic processing methods: whole text analysis and chunking text into
smaller sections and compare the performance to human evaluators.

While previous research has provided insights on using LLMs for deductive coding, our study takes
a novel approach by comparing whole text and text chunk analysis using the three distinct OpenAl
LLM models. In doing so this research explores how the volume of data impacts LLM accuracy and
effectiveness. Another key contribution of our research is addressing context aggregation biases through
a fixed-size text chunk approach. Fixed-sized text chunking may preserve localized and sectional themes
that are overlooked when treating entire documents as single units. This paper explores the performance
of text chunking, illustrating that its application is appropriate for managing the size of documents
analyzed by LLMs, providing insights that expose nuances in meanings that whole text analysis might
miss.

2. Materials and Methods
2.1. Deductive Coding

Table 1. Subset of the codebook for the 17 dimensions coded in the paper. A full codebook is available
in the supplemental materials..

Dimension Definition

Physical Entity or A tangible object or areal-world process within a physical

Process system, such as a piece of equipment, a component, or
an operational process in an industrial setting such as a
manufacturing operation.

Fidelity Degree of accuracy and completeness with which a digi-
tal twin replicates the physical counterpart of the system,
related to data, behavior, physical structure, etc. Exam-
ples include ‘“comprehensive physical and functional
description” or fully mirroring the characteristics and
functionality of the physical entity.

Use-Cases The applications of the Digital Twin, e.g., decision sup-
port, simulation, forecasting.

The deductive coding approach utilized a detailed codebook of 17 digital twin (DT) characteristics
adapted from (Jones et al. 2020), with expanded definitions providing clear context and examples for
each parameter (a subset is shown in Table 1). Each dimension was marked as True or False for a
paper, with True indicating that the paper discussed the dimension of interest as defined. Ten articles
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discussing the development of digital twins were selected for coding. Deductive coding was performed
manually by a team of three non-expert researchers following the methods outlined in (Elo and Kyngis
2008) to determine if the papers discussed each of the DT characteristics. This manual coding served
as the reference point for assessing the performance of the LLMs. Deductive coding by LLMs was then
performed using the same codebook given to humans.

2.2. LLM Utilization

Two LLM prompting approaches were used for comparison, utilizing three of OpenAI’s latest models:
‘gpt-40°, ‘gpt-40-mini‘, and ‘ol-mini ‘. Notably, ‘ol-mini‘ employs a recursive thought chain mech-
anism, offering potentially enhanced reasoning capabilities. Text was extracted from PDF files of the
publications using PyPDF2, with multiple verification processes and Optical Character Recognition
technology from Python’s PyTesseract and pdf2image libraries to enable effective analysis of scanned
documents and images. Extracted texts underwent preprocessing to remove unwanted characters, cor-
rect hyphenations, and fix erroneous newline insertions. The documents were divided into fixed-size
500-word chunks using a chunking mechanism to facilitate manageable input sizes for the LLMs. Each
chunk was analyzed individually for the presence of each DT characteristic. The OpenAl Python API
was used to interface with the LLMs, resetting the LLM instance between each prompt execution to
ensure independence of responses. Algorithm 1 and Algorithm 2 illustrate the methods used for each
approach. Method 1 (the “Whole Paper Approach”) passes the entire text to the LLM, along with the
associated prompt for each characteristic. Method 2 (the “Chunking Approach”) processes the document
in 500-word chunks, passing each chunk to the LLM for individual deductive coding analysis. In this
study, prompt engineering was not explored, and the LLM was given the same codebook as the manual
raters. The structure of the prompt passed to the LLM can likely influence the results of the response,
although this was deemed out of scope for this research. The following prompt was used for all models:

“Explain whether the parameter 'parameter’ is mentioned/directly talked about in the following text
and provide evidence from the text. If it does, briefly explain how (3-5 sentences with ~2 pieces of
evidence), if it does not match, briefly explain why the paper does not focus on it (1 sentence). Note that

s

‘parameter’ is defined as ’definition’.

Algorithm 2 Fixed-Size Chunk analysis of docu-
ments, taking as input StudySet, Codebook

for Text € StudySet do

Algorithm 1 Whole Paper analysis of documents,

1:
taking as input StudySet, Codebook 2 Divide Text into TextChunks

1. for Text € StudySet do 3 for Item € TextChunks do

2: for Dim € Cyodebook do 4: for Dim € Codebook do

3 PASS Text to LLM 5 PASS Text to LLM

4 PROMPT LLM fo determine if Dim & . . . TROMPT LLM to determine if

is in Text Dim is in Text

5 if LLM = TRUE then 7: if LLM = TRUE then

6 Dim « TRUE 8 Dim «— TRUE

7: end if 9: end if

8 OutputTable(Text, Dim) « Dim 10: OutputTable(Text, Dim) < Dim
9 end for | 11: end for

12: end for

: t OutputTable(Text

1? endr;-:):.l rn OutputTable(texy 13: return OutputTable(Text)

14: end for
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In this paper, a “consensus approach” was explored where the mode of a dimension for a given
paper across all fifteen iterations (either True or False) was selected as the output of the total LLM
analysis, essentially introducing the LLM as an additional individual rater. The consensus approach was
examined for its accuracy as an individual rater (using the consensus of the three manual raters as a gold
standard for correct classifications) and for its applications as an additional rater in conjunction with
the manual team, an exploration of human-Al teaming for document analysis. Sample outputs from the
LLM models are shown in Table S1 in the appendix, including a positive and negative result for each.
The results from the chunking approach were a stitching of these outputs, with one response for every
500 words in the article rounded up.

Return results would then be classified as true if a minimum of one response indicated the presence of
a dimension. Following the classification by the LLM, a keyword search was employed to mark outputs
of results. The first 510 results from the whole paper approach (170 results for each model) were used
to identify the keywords and phrases indicating a true result. Out of these results, 1.7% were incorrectly
classified using this approach, with a near 50-50 split of false positives (FP) and false negatives (FN) (5
FP — 4 FN), indicating a negligible level of error from the key phrase classification. The following key
phrases were used to mark responses from the LLM as true:

{ves; clearly stated; the text does mention; the text does discuss; the paper mentions the parameter;
indirectly mentioned; is explicitly mentioned; indeed; does talk; is discussed; is referenced; is mentioned;
implicit; does address}

The performance of the deductive coding approach was assessed using interrater agreement, accuracy,
precision, and recall. Measures of accuracy, precision, and recall were calculated according to (Witten
et al. 2011). The Fleiss’ Kappa (K) value is used to measure agreement between raters when the raters
are different for each subject, but the volume of raters is the same (Fleiss 1971). Fleiss’ Kappa values
were calculated using the ‘kappam.fleiss function from the ‘irr* v0.84.1 package for R 2023.12.1+402
(Gamer et al. 2010). The performance of the LLMs were also evaluated using the internal variance which
was measured by calculating the percentage of iterations which adhered to the consensus result. Percent
agreement is a measure of the agreement amongst raters, representing the proportion of responses
between the raters which align with one another and the number of non-erroneous results (McHugh
2012). As a binary scale is used in this research, the percent agreement is taken as the proportion of
responses which align with the mode across the raters. The percent agreement metric is limited as it does
not account for the possibility of chance agreements (McHugh 2012). In addition, percent agreement
is less effective when employed in classification systems with non-binary or hierarchical levels as the
difference in ratings may have variable magnitudes (Graham et al. 2014). When using percent agreement
as an interrater reliability metric, higher standards must be achieved to address the assumption that all
agreements are not driven by chance, thus it is recommended by Graham et al. (2014) that a target percent
agreement of 90% should be achieved for the classifications to be considered strong, especially when
used with adjacent categories. Fleiss’ kappa coefficient is known to be subject to paradoxical behavior,
where the kappa may be underestimated, even as percent agreement is high (Falotico and Quatto 2015).
For the Fleiss kappa coefficient, Fleiss et al. (2003) recommend a range of 0.40-0.75 for fair agreement
beyond chance, while at scores below 0.40 agreement is strongly driven by chance agreements.

3. Results

Table 2 presents our findings across the measures of variance, accuracy, precision, and recall. Variance
is measured by internal agreement across iterations. Success rate (herein called Accuracy), precision,
and recall are metrics to evaluate data mining techniques as proposed by Witten et al. (2011). As defined
by Witten et al. (2011), recall is the rate of relevant retrievals to all relevant items while precision is the
rate of relevant retrievals to all retrievals. Accuracy is the total relevant retrievals to the entire body of
mined data. In the subsequent sections we discuss each measure in detail.
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Table 2. Performance comparison between treatment (models and prompting approaches) representing
the mean value across the 10 papers analyzed across 15 iterations as compared to the control (human
raters).

Measure GPT-40 GPT-40-mini ol-mini

Whole Paper  Chunking  Whole Paper Chunking Whole Paper ~ Chunking

Iteration Percent Agreement? *** 73.55% 87.61%* 78.88% 80.35% 64.47% 89.89%***
Accuracy ** 74.12% 87.65%** 77.65% 84.12% 72.35% 87.06%**
Precision 91.68% 90.63% 90.17% 93.64% 93.85% 89.90%

Recall *#* 76.58% 95.09%*** 82.61% 86.52% 72.18% 94919+

@ Represents internal percent agreement without comparison to human raters.

*, #% w4k Represents Kruskal-Wallis significance difference at 10%, 5%, 1% between treatments.

+, ++, +++ Represents pairwise Mann-Whitney comparison significance at 10%, 5%, 1% between prompting approaches of the same
model.

3.1. LLM Internal Variance

After 15 iterations and across all authors, utilizing the chunking approach showed higher average internal
agreement across all models, indicating that it had higher consistency during repeated prompting
compared to the whole paper approach. The ol-mini model’s chunking approach had the highest
internal agreement at 89.9% compared to the whole paper approach of 64.5%. GPT-40 and GPT-4o-
mini respectively showed average internal agreements across all papers as 87.6% and 80.4% for the
chunking approach and 73.5% and 78.9% for the whole paper approach. Nonparametric statistics were
employed in this analysis because of the non-normality of the ol-mini chunking approach internal
agreements. Using the final internal agreement percentage by paper, a Kruskal-Wallace test shows a
p-value of 1.71x10-5, indicating that there is a statistically significant difference between the means of
some of the groups. Pairwise Mann-Whitney testing showed that the chunking approach for ol-mini
had statistically significant more internal agreement than all whole paper methods and the GPT-40-mini
chunking approach. We found that ol-mini was the only model that showed significant improvements
in internal agreement when moving from the whole paper approach to the chunking approach. The ol-
mini whole paper approach was significantly less consistent than all models employing the chunking
approach. While the averaged internal agreement for the chunking approach is greater than the whole
paper, there is no statistically significant difference in internal agreement between the models and
prompting approaches. This indicates that ol-mini is significantly impacted by the volume of data
passed compared to the other models, and that with a smaller context it can perform better than the other
two models. Neither GPT-40 or GPT-40-mini when chunked shows significant variance from the whole
paper approach or from the other models. When performing single-sample Wilcoxon Signed-Rank Test,
all whole paper approaches and the GPT-4o0-mini chunking approach show significant difference from a
median internal agreement value of 90% while the chunking approaches for GPT-40 and ol-mini show
no significant difference (p >.10). As Graham et al. 2014 and Stemler 2004 point out, this indicates that
the agreements between the whole paper approaches and the manual classifications may be driven by
chance, even though their accuracy is not significantly different from the chunking approaches.
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Figure 1. Internal Agreement of LLM Models and Prompting Approach. The blue line shows the average
internal agreement across all papers while the grey lines show the individual results of each paper..

3.2. LLM and Manual Consensus Agreement

Figure 2 illustrates accuracy as a measure of performance of the LLM consensus results using the
consensus of the three human raters as the comparison benchmark across all dimension classifications.
Across all models, the chunking approaches had a higher mean agreement across the 170 total manual
ratings, indicating that models are more likely to agree with human raters across iterations. The highest
levels of overall agreement of the LLM compared to human raters were all achieved using the chunking
approach Kruskal-Wallis test of variance shows moderate statistical significance between models and
coding approaches (p <0.10).
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Figure 2. Averaged LLM Accuracy with Manual Raters with +2 Standard Deviations of Error..
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When examining the recall of the different models and prompting approaches using a Mann-Whitney
pairwise comparison, there is a statistically significant difference between several of the groups. Notably,
both GPT-40 and o1-mini performed significantly better than all whole paper approaches. This indicates
that GPT-40 and o1-mini more correctly identified relevant outcomes when they have a smaller volume
of data to sift through. No significant differences were found using GPT-40-mini when applying the
whole text approach or the fixed chunk approach. None of the models performed differently from another
when using the chunking approach. GPT-40-mini performed better than ol-mini when using the whole
paper approach, further indicating that GPT-40-mini is less volume dependent while ol-mini suffers
greater when it has more data.

A Kruskal-Wallis test shows that
between all groups there is no sig-
nificant difference in the precision of 1001
the models, indicating that there is not
a major trade-off between the higher
recall of the chunking approaches and
precision. This means that GPT-40 °
or ol-mini employed with the chunk-
ing approach are better at correctly 90- A
identifying relevant outcomes without
overclassifying the dimensions as true.

Prompt
@® Chunk
A Whole Paper

Model
GPT40

® GPT40-mini
GPTol

Mean Precision (%)

3.3. Frequency of Classification

Across all dimensions and papers, 801

the consensus of the manual coders

marked 86% of classifications as True,

as displayed in Figure 4. When com-

paring the positive identification rate

(True Positives / Manual Positives),

both GPT-40 and ol-mini performed ‘ ‘ ‘ ‘
best when employed with the chunk- o % ean Recall 36) 10
ing approach. Mann-Whitney pairwise
comparisons show these models out-
performed the chunking approach with
GPT-40-mini and all whole paper
approaches in correctly identifying
positives. GPT-40-mini did not have
significant performance difference between the chunking approach and the whole paper approach. This,
however, seems to come at the cost of a negative identification rate. As shown above, the chunking
approaches for GPT-40 and ol-mini were less likely to classify negatives, resulting in a negative identi-
fication rate of 48% and 45%, respectively; these are the lowest negative identification rates across the
models and prompting approaches. Despite this, a Kruskal-Wallis test shows no significant difference
between negative identification rate (True Negatives / Manual Negatives) of the treatment groups, indi-
cating that the decreased negative identification rate of GPT-40 and o1-mini using chunked text is not a
statistically significant underperformance.

70-

Figure 3. Precision vs. Recall of Models across all classifi-
cations using consensus approach when compared to manual
consensus results across all 10 analyzed documents..
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Figure 4. Confusion Matrix results of the different approaches when comparing the consensus of 15
iterations of LLM execution to the consensus of 3 manual raters. .

There were discrepancies within specific coded dimensions towards either overclassifying positives or
negatives. Notably, all models and prompting approaches suffered in correctly identifying true instances
of the dimensions Data Ownership and Virtual-to-Physical Connection (V2P). Interestingly, manual
raters also showed disagreement, with 40% of papers and 60% of papers indicating disagreement in
the classifications of Data Ownership and V2P, respectively. The Whole Paper approaches were less
accurate in correctly identifying positive instances of the dimensions Metrology, Realization, and Virtual
Environment while the chunking approach for all models had higher positive identification rates. The
dimension Realization also caused disagreement to manual raters where 60% of papers had disagreement
between raters regarding the discussion of this dimension. Metrology and Virtual Environment showed
20% of papers having disagreements between manual raters regarding the discussion of the parameters.

Failure to identify the lack of discussion regarding a dimension was common for some dimensions
as well. All models and prompting approaches struggled to identify the absence of discussion of the
dimensions State and Fidelity. Manual raters disagreed for these dimensions on 30% and 40% of papers,
respectively.
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Figure 5. Consensus Approach Comparison to human raters for each dimension across all 10 papers,
showing the true positive and true negative classifications. The background white bar shows the number
of positive or negative classifications by the manual consensus. .

The manual coding achieved a Fleiss Kappa value of 0.434, indicating fair agreement amongst
manual raters, a statistically significant difference from purely chance agreement. As shown in Table
4, the Fleiss K values of the models when employed as a 4th rater decreased across all models when
using the whole paper approach. The Chunking approach, on the other hand, did maintain statistical
significance when employed with the GPT-40 and GPT-40-mini models, although only the GPT-4o-
mini showed improvements in the K value from the manual baseline. This indicates that the chunking
approach is statistically more likely to have non-chance agreements with humans.

LLM Model GPT-40-mini GPT-40 ol-mini

Prompting Approach Whole Paper Chunk Whole Paper Chunk Whole Paper Chunk

Consensus Kappa (N=4) 0.346 0.437 0.324 0.407 0.337 0.390
Internal Kappa (N=15) 0.942 0.644 0.911 0.596 0.663 0.634

Table 3. Fleiss K values of Models with manual ratings using consensus approach (n=4) and the
individual iterations as raters without humans (n=15). When using only the manual results, the Fleiss
kappa value across the three raters and the ten papers was 0.434..
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Figure 6 shows Kappa statistic after adding the LLM as an additional rater. Six of the ten analyzed
articles showed some improvement when using the chunking approach with the ol-mini and GPT-
4o0-mini models while seven showed some improvement with the GPT-40 model. The frequency of
improved analyses dropped precipitously when employing the whole text approach. Employing the
chunking approach with both GPT-40 and GPT-40-mini showed significant agreement when teamed with
human raters as indicated by the kappa value above 0.400. o1-mini showed near significant agreement
with humans, although ultimately it fell below the threshold. This indicates that, if employed within a
human-AlI team, the chunking approach for GPT-40 and GPT-40-mini could consistently improve the
significance of the analysis of documents.

Chunk Whole Paper
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Figure 6. Changes to the Fleiss Kappa interrater agreement statistic by paper when adding the con-
sensus result of the LLM models and prompting approaches as an additional rater..

4. Discussion

This study aimed to provide a comparative exploration of deductive coding methods utilizing LLMs
to address the time and variability constraints of human coding of extensive textual documentation.
We found that in the context of coding digital twin characteristics in scientific documents relating to
urban systems that LLMs have demonstrated potential to address these challenges and provide a viable
additional coder. Thereby providing an option for evaluating large datasets and adding additional context
for managing complex urban environments.
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This research adopts Al-teaming with deductive coding, leveraging AI’s efficiency alongside a
coding framework derived from expert knowledge. Our methodology was designed to approximate
the rigor of conventional complex binary documentation analysis with the augmented capacities of
artificial intelligence. In deploying LLMs, we aimed to refine the coding process specifically within
the domain of Urban systems applications. This application of LLMs is intended to augment the speed
and analytical precision with which complex scientific papers are classified and examined and thereby
aid in the sustainable management of urban systems infrastructure. The findings suggest that when
using text chunking strategies, GPT-40 and ol-mini coding results closely align with human coding
and perform better than their whole paper counterparts across almost all metrics analyzed in this paper
while maintaining internal consistency. This is shown in the significance of the K values shown in Table
4, where both GPT-40 and GPT-40-mini maintained statistical significance when paired with human
raters. These results suggest that LLMs can perform comparably to human coders or assist in analysis
when provided specific prompts and tasks structured within the deductive coding process. Utilizing
LLMs as an additional coder could not only reduce the time and resource constraints associated with
manual coding but provide a more reliable source of coding as once the LLMs are trained it produces
compatible results. This suggests an application where Al-enabled coding could substantially augment
the document review workflow. While this paper did not explore prompt engineering, future research
may focus on how LLM performance compares to people when given different codebook to address
some of the issues identified for specific dimensions.

Moreover, our research highlights the need for analyzing the semantic processing of LLMs. We
found that chunking more closely resembles how humans process language. We however caution the
readers on blanket application of the findings from this study. The performance demonstrated was
specific to the codebook and prompting approach. Further research is needed to consider and address
the range of consensus found and research would be beneficial to explore the specifics of how each GPT
model explained its findings. This could hopefully lead to methods which can help address failures in
the codebook used for deductive coding, reducing uncertainty for humans and Al alike. With greater
understanding into the semantic processing of LLMs, prompts and deductive coding codebooks can be
engineered for better LLM performance and explainability. Whether these observed effects continue
with later versions of the OpenAl or other developed LLMs is an area of potential research. Ultimately,
we found that, given the high percentage of false negatives, that certain contextual scanning could lead
to anomalous investments. So, while LLMs present a viable tool, their application should be deployed
with rigorous validation against human benchmarks. However, one limitation of our approach is that
this paper employed fixed-size text chunking based on the number of words in an article which runs the
risk of cutting off context at the chunk boundaries. Further research may explore how different chunking
approaches impact performance of LLMs, such as semantic chunking or thematic chunking.

Another notable aspect of our findings relates to the choice of LLM model. Unlike GPT-40 and
GPT-40-mini, which rely on direct-shot responses, ol-mini employs a chain-of-thought approach that
appears to confer a unique advantage when dealing with smaller segments of text. Although ol-mini
did not outperform GPT-40 under whole-text conditions, its performance generally improved the results
of both GPT-40 and GPT-40-mini when utilizing the chunks approach. This observation aligns with the
reasoning patterns reported in recent work on the ol-model series Wang et al. 2024, which highlight
the models’ ability to plan, self-refine, and address tasks incrementally. The recursive thought chain
mechanism within ol-mini likely enables it to deeply consider each segment, scanning and synthesizing
information in a manner more akin to a human’s incremental reading process. By contrast, GPT-4o0 and
GPT-40-mini—Ilacking this recursive reasoning structure—may struggle to maintain comprehensive
context or revisit earlier content consistently, particularly as document length expands. Hence, o1-mini’s
strong performance in the chunk-based analysis emphasizes how modeling approaches that incorporate
structured reasoning steps can yield richer, more reliable qualitative assessments.
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5. Conclusion

As the volume of textual data used within the urban systems management and development industry ever
increases, methods to categorize and link documents are increasingly needed to reduce the cognitive
burden on humans. This paper analyzed how large language models could be employed within human-
Al teams for the deductive coding and classification of articles, examining their similarities to human
raters when employing different prompting approaches. Three models from OpenAl were analyzed -
GPT-40, GPT-40-mini, and ol-mini — using both a whole text prompting approach and a fixed-size text
chunking approach. These models were run for 15 iterations across 10 papers for the analysis of 17
different binary dimensions with a team of 3 non-expert human raters as a point of comparison. For
ol-mini and GPT-4o, providing a reduced volume of data for a given execution through text chunking
improved the internal agreement across iterations compared to using the same models with the whole
text. These models also showed improvements in the recall of data without a significant sacrifice to
the precision when employed with text chunking, indicating that chunking aids the models in correctly
identifying relevant outcomes; this is also shown through the higher identification of true positives.
Finally, GPT-40, ol-mini and GPT-40-mini showed significant agreement with human raters when
employed using the chunking method, although this agreement rate dropped when passing the whole
text for GPT-40 and ol-mini. The application of both GPT-40 and GPT-40-mini as an additional rater
with three manual raters showed statistical significance, indicating that the LLMs can benefit the analysis
of textual documents. GPT-40-mini showed little difference based on the volume of text provided during
prompting. In fact, it outperformed o1-mini in the whole text analysis, indicating that ol-mini is greatly
impacted by the volume of data passed to the LLM whereas GPT-40-mini showed minimal variation in
performance. Ultimately, this research shows that a fixed-size chunking approach for deductive coding
using LLMs can very closely mirror the same analysis performed by humans which can be useful for
either augmenting or automating the document classification process.
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Model Classification Type
Positive Negative

GPT-40-mini Yes, the parameter ’Virtual Entity’ is dis- The parameter "Physical Environment" is
cussed in the text, particularly in relation not directly mentioned or discussed in
to the concept of digital twins. Evidence of  the provided text. While the text revolves
this can be found in the section where the around technological advancements, data
authors define a digital twin as a "virtual —management, and innovations in the water
twin" that serves as a digital representation  utility sector, it primarily emphasizes
of an object, system, or process. They clarify  aspects related to digital transformation
that digital twins are updated from near- rather than the physical surroundings and
real-time data and assist in decision-making  infrastructure where these systems operate.
through simulation and analysis ("Digital
Twins. A digital twin, sometimes called a
virtual twin, is a digital representation of
an object, system, or process that simulates
real-world performance.").

GPT-40 The text discusses ’Physical Entity and Pro-  The text does not specifically address "Data
cesses’ by referencing tangible objects or  Ownership,” as defined as "The legal own-
real-world processes within physical sys- ership and security of the data stored
tems. Evidence of this is seen in the dis-  within the Digital Twin.” Instead, the article
cussion about technologies such as digital focuses on the applications and transforma-
twins and Al, which help visualize, ana- tive potential of digital technologies like
lyze, and optimize complex systems like artificial intelligence, digital twins, and data
treatment plants (paragraph 11). Addition- integration in the water utility sector. The
ally, the text describes how real-time control ~ text emphasizes the ability of these tech-
systems, such as SCADA, are used to man-  nologies to enhance operational efficiency,
age water distribution systems, which are  improve decision-making, and foster collab-
operational processes in industrial settings oration by using data-driven insights but
(paragraph 21). These examples highlight does not delve into the legal or security
the involvement of tangible equipment and  aspects of data ownership.
systems in optimizing industrial operations,
fitting the definition of ’Physical Entity and
Processes.’

GPT-o1 Yes, the parameter ’Use Cases’ is dis- The term "Virtual Entity" is not explicitly

cussed in the text. The article provides
specific applications of digital twins, such
as automating public notifications for com-
bined system overflows to ensure regulatory
compliance and protect public health. Addi-
tionally, it highlights the use of Al for
predictive maintenance, enabling utilities
to forecast equipment failures and opti-
mize maintenance schedules. These exam-
ples demonstrate how digital twins and Al
serve as decision support and forecasting
tools within water utility operations, align-
ing with the defined concept of "Use Cases.’

mentioned in the provided text. While the
article extensively discusses digital twins
and virtual twins, which are related con-
cepts, it does not specifically address indi-
vidual digital counterparts or replicas as
defined by "Virtual Entity." For example,
the text states, "Digital twins and Al enable
users to visualize, analyze, and optimize
complex systems," and further elaborates on
the functionalities of digital twins. However,
it does not delve into the specifics of digital
models mimicking individual physical enti-
ties within the digital twin environment.

Table S1. Sample Positive and Negative Results from each LLM for a given Dimension..
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